• Title/Summary/Keyword: Psi (or Digamma) function ${\psi}(z)$

Search Result 3, Processing Time 0.018 seconds

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.

CERTAIN INTEGRALS ASSOCIATED WITH GENERALIZED MITTAG-LEFFLER FUNCTION

  • Agarwal, Praveen;Choi, Junesang;Jain, Shilpi;Rashidi, Mohammad Mehdi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • The main objective of this paper is to establish certain unified integral formula involving the product of the generalized Mittag-Leffler type function $E^{({\gamma}_j),(l_j)}_{({\rho}_j),{\lambda}}[z_1,{\ldots},z_r]$ and the Srivastava's polynomials $S^m_n[x]$. We also show how the main result here is general by demonstrating some interesting special cases.