• Title/Summary/Keyword: Pseudosteady-state

Search Result 3, Processing Time 0.014 seconds

Pseudosteady-State Approach to Calculate Long-Time Performance of Closed Gas Reservoirs (유사정상상태 해법을 이용한 폐쇄 가스저류층의 장기거동 계산)

  • Lee Kun Sang
    • 한국가스학회:학술대회논문집
    • /
    • 1998.09a
    • /
    • pp.241-246
    • /
    • 1998
  • This paper considers the applicability of a pseudosteady-state approach to the long-time behavior of real gas flow in a closed reservoir. The method involves a combination of a linearized gas diffusivity equation using a normalized pseudotime and a material balance equation. Comparison with a commercial reservoir simulator showed that highly accurate values of pseudopressure drawdown and well pressure are obtained by the pseudosteady-state approach with much less computational effort.

  • PDF

Modified Pseudosteady-State Approach to Calculate Long-Time Performance of Closed Gas Reservoirs (수정된 유사정상상태 해법을 이용한 폐쇄 가스저류층의 장기 거동 해석)

  • Lee Kun Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.73-78
    • /
    • 1998
  • This paper considers the applicability of a pseudosteady-state approach to the long-time behavior of real gas flow in a closed reservoir. The method involves a combination of a linearized gas diffusivity equation using a normalized pseudotime and a material balance equation. For the simulation of field-scale problems with multiple wells of differing production rates over extended production periods, the pseudosteady-state equation was solved successively for each flow period. Results from this study show that the approach provides a fast and accurate method for modeling the long-time behavior of gas reservoirs under depletion conditions.

  • PDF

A New Method to Calculate Pseudoskin Factor of a Partially-Penetrating Well (부분관통정의 유사표피인자 계산을 위한 새로운 방법)

  • Lee, Kun-Sang
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.42-47
    • /
    • 1999
  • This study considers pseudosteady-state flow to a restricted-entry well in a single or multilayer aquifer with crossflow. A simple method for calculating the pseudoskin factor caused by partial penetration is presented to overcome a limited applicability in geometrical or computational aspects of previous methods. The computation is based on the solution of a simplified pseudosteady-state equation that describes the long-time behavior of the closed radial system. We illustrate the applicability of this method to various types of cylindrical systems and provide the results graphically. Comparisons with previously published results have indicated that this method yields highly accurate estimates of pseu-doskin factor with minimum computational effort. This method has also shown to be particularly useful for geometrically-complicated systems. Greatly improved computational efficiency of pseudosteady-state approach permits the engineer to easily account for the effect of partial penetration on the late-time performance of a well.

  • PDF