• Title/Summary/Keyword: Pseudorange

Search Result 99, Processing Time 0.026 seconds

An Attitude Error Estimation Performance Comparison of Tightly Coupled INS/GPS Navigation System using Different Measurements (강결합 방식의 INS/GPS 시스템에서의 자세 오차 추정 성능 비교)

  • Yu, Hae-Sung;Kim, Cheon-Joong;Yoo, Ki-Jeong;Lee, Youn-Seon;Park, Heung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • This paper addresses the performance comparisons of the GPS pseudorange and pseudorange rate measurements in the tightly coupled INS/GPS Navigation systems. Even though the two measurements have the same ability in estimating level attitude errors, pseudorange rate has an advantage in improving estimating heading attitude error performance. The performance of pseudorange and pseudorange rate measurements is compared in numerical simulations and van test.

Improvement on the Vehicle Positioning Accuracy Using Differential Method for Vehicle Tracking (차량 추적 시스템에서 차분기법을 이용한 정밀도 향상에 관한 연구)

  • 장경일;이원우;길계환;김용윤;황춘식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.16-25
    • /
    • 1997
  • This paper shows the development of the high accuracy vehicle positioning algorithm using the differential technique in vehicle tracking systems form the existing vehicle position which is acquired from the global positioning system (GPS). The control center receives the satellite ephemerise data and pseudorange correction from the reference station, and vehicle position from the moving vehicle. The pseudorange is calculated with the satellite position and the vehicle position, and corrected by pseudorange correction. Using this corrected pseudorange and kalman filter, more improved vehicle positioning data were obtained.

  • PDF

A Study on Two-Dimensional Positioning Algorithms Based on GPS Pseudorange Technique

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.705-708
    • /
    • 2010
  • In the paper, we have studied on algorithms for two-dimensional positioning based on GPS pseudorange Technique. First, the linearized state equation was mathematically derived based on GPS pseudorange technique. Second, the geometry model with respect to triangles formed using unit-vectors were proposed for investigation of land-based radio positioning. Finally, the corresponding mathematical formulations for DOP values and covariance matrix were designed for two-dimensional positioning.

  • PDF

The Study for Improving Performance in IDGPS using IS-801 (IS-801을 이용한 IDGPS의 성능향상 방법 연구)

  • 현문필;김현수;지규인;김병수;김학렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.63-63
    • /
    • 2000
  • This paper is about the method to improve the IDGPS system using receiver which is not aligned to GPS time. Transmitted data between server and user is constructed in PDDM of IS-801 rule. Pseudorange is overflowed in case of using receiver unaligned GPS time. And satellite position is miscalculated because earth rotating effect is not corrected. To solve this problem, when Pseudorange measurement is over the maximum range, the Pseudorange measurement is reset. And after the rough user position and transmit time is calculated, the precise Pseudorange measurement is calculated.

  • PDF

A Study for Improving the Positioning Accuracy of DGPS Based on Multi-Reference Stations by Applying Exponential Modeling on Pseudorange Corrections

  • Kim, Koon-Tack;Park, Kwan-Dong;Lee, Eunsung;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, a pseudorange correction regeneration algorithm was developed to improve the positioning accuracy of DGPS using multi-reference stations, and the optimal minimum number of reference sites was determined by trying out different numbers of reference. This research was conducted using from two to five sites, and positioning errors of less than 1 m were obtained when pseudorange corrections are collected from at least four reference stations and interpolated as the pseudorange correction at the rover. After determining the optimal minimum number of reference stations, the pseudorange correction regeneration algorithm developed was tested by comparison with the performance of other algorithms. Our approach was developed based on an exponential model. If pseudorange corrections are regenerated using an exponential model, the effect of a small difference in the baseline distance can be enlarged. Therefore, weights can be applied sensitively even when the baseline distance differs by a small amount. Also weights on the baseline distance were applied differently by assigning weights depending on the difference of the longest and shortest baselines. Through this method, the positioning accuracy improved by 19% compared to the result of previous studies.

Correction Calculation based Pseudorange (의사거리 기반 보정정보 생성)

  • Choi, Jin-Kyu;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.98-99
    • /
    • 2007
  • It is necessary to use satellite radio navigation system as well as satellite radio navigation augmentation system such as differential Global Positioning System to achieve the positioning accuracy and reliability requested by International Maritime Organization in port and coastal area. Especially, position accuracy of DGPS user is effected by accuracy of pseudorange correction broadcasted from DGPS reference station. This paper shows pseudorange correction calculation algorithm adopting a non-common error estimation filter in order to improve accuracy of pseudorange correction. Finally, this paper verifies that the pseudorange correction calculated by adopting a non-common error estimation filter satisfies performance specifications of RTCM.

  • PDF

Performance Comparison of GPS Fault Detection and Isolation via Pseudorange Prediction Model based Test Statistics

  • Yoo, Jang-Sik;Ahn, Jong-Sun;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.797-806
    • /
    • 2012
  • Fault detection and isolation (FDI) algorithms provide fault monitoring methods in GPS measurement to isolate abnormal signals from the GPS satellites or the acquired signal in receiver. In order to monitor the occurred faults, FDI generates test statistics and decides the case that is beyond a designed threshold as a fault. For such problem of fault detection and isolation, this paper presents and evaluates position domain integrity monitoring methods by formulating various pseudorange prediction methods and investigating the resulting test statistics. In particular, precise measurements like carrier phase and Doppler rate are employed under the assumption of fault free carrier signal. The presented position domain algorithm contains the following process; first a common pseudorange prediction formula is defined with the proposed variations in pseudorange differential update. Next, a threshold computation is proposed with the test statistics distribution considering the elevation angle. Then, by examining the test statistics, fault detection and isolation is done for each satellite channel. To verify the performance, simulations using the presented fault detection methods are done for an ideal and real fault case, respectively.

GPS Anomaly Analysis and Pseudorange Accuracy Improvement by Anomalous Satellite Elimination

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.511-516
    • /
    • 2010
  • GPS anomaly has increased according to the degradation of satellite performance, and many GPS users could be exposed to any kinds of error-included signals without any previous notice when unscheduled error occurred. RSIM (Reference Station Integrity Monitors) is a typical monitoring method to broadcast PRC (Pseudo Range Correction) for users. However, there were some cases that the receiver detected the anomalous satellite's signal even though it was unhealthy set, consequently it occurred a large range error. Then it is important to monitor the integrity of GPS signal and it is needed to devise the correction method of pseudorange by eliminating error-occurred PRN for notification to GPS users when it is monitored that the anomaly occurred. This paper proposes the basic concept of how to correct the pseudorange. The paper also shows the analysis results of PRN10 GPS anomaly occurred on day 39 in 2007 with corrected results by eliminating anomaly satellite (PRN10). The proposed correction method shows decreased pseudorange error range compared to the case when the anomaly satellite were used.

Mathematical Algorithms for Two-Dimensional Positioning Based on GPS Pseudorange Technique

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.602-607
    • /
    • 2010
  • Recently, one has realized that the threedimensional positioning technique used in GPS can be effectively applied to the modern two-dimensional positioning. Such a technique might has applied to the twodimensional positioning in fields of the mobile communication, eLORAN and the GPS jamming/ electronic warfare system. In the paper, we have studied on algorithms for two-dimensional positioning based on GPS Pseudorange Technique. The main works and results are summarized below. First, the linearized state equation was mathematically derived based on GPS pseudorange technique. Second, the geometry model with respect to triangles formed using unit-vectors were proposed for investigation of land-based radio positioning. Finally, the corresponding mathematical formulations for DOP values and covariance matrix were designed for two-dimensional positioning.

Along-Track Position Error Bound Estimation using Kalman Filter-Based RAIM for UAV Geofencing

  • Gihun, Nam;Junsoo, Kim;Dongchan, Min;Jiyun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Geofencing supports unmanned aerial vehicle (UAV) operation by defining stay-in and stay-out regions. National Aeronautics and Space Administration (NASA) has developed a prototype of the geofencing function, SAFEGUARD, which prevents stayout region violation by utilizing position estimates. Thus, SAFEGUARD depends on navigation system performance, and the safety risk associated with the navigation system uncertainty should be considered. This study presents a methodology to compute the safety risk assessment-based along-track position error bound under nominal and Global Navigation Satellite Systems (GNSS) failure conditions. A Kalman filter system using pseudorange measurements as well as pseudorange rate measurements is considered for determining the position uncertainty induced by velocity uncertainty. The worst case pseudorange and pseudorange rate fault-based position error bound under the GNSS failure condition are derived by applying a Receiver Autonomous Integrity Monitor (RAIM). Position error bound simulations are also conducted for different GNSS fault hypotheses and constellation conditions with a GNSS/INS integrated navigation system. The results show that the proposed along-track position error bounds depend on satellite geometries caused by UAV attitude change and are reduced to about 40% of those of the single constellation case when using the dual constellation.