• 제목/요약/키워드: Pseudomonas syringae pv. tabaci

검색결과 28건 처리시간 0.041초

Functional Analysis of Pepper Cys2/His-Type Zinc-Finger Protein Promoter Region in Response to Bacterial Infection and Abiotic Stresses in Tobacco Using Agrobacterium-Mediated Transient Assay

  • Kim, Sang-Hee;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제21권1호
    • /
    • pp.39-46
    • /
    • 2005
  • The promoter region flanking the 5’ CAZFP1 coding region was isolated from the genomic DNA of Capsicum annuum. To identify the upstream region of the CAZFP1 gene required for promoter activity, a series of CAZFP1 promoter deletion derivatives was created. Each deletion construct was analyzed by Agrobacterium-mediated transient transformation in tobacco leaves after infection by Pseudomonas syringae pv. tabaci, or treatment with methyl jasmonate (MeJA), ethylene, abscisic acid (ABA), salicylic acid (SA), cold and wounding. Promoter fragments of 685 bp or longer showed 7-fold or greater induction after P. s. pv. tabaci infection and MeJA treatment. The CAZFP1 full-length promoter (-999 bp) also showed 6-fold induction in response to ethylene. The transiently transformed tobacco leaves with the CAZFP1 full length promoter fused-GUS gene showed more than 5-fold induction in response to SA, ABA and cold. These results suggest that the CAZFP1 promoter contains responsive elements for pathogen, MeJA, ethylene, SA, ABA and cold.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

수분ㆍ수정 시기를 이용한 Bialaphos 저항성 형질전환 담배의 개발 (Development of Bialaphos Resistant Transgenic Tabacco Plants by Pollination and Utilization of Fertilization Cycle)

  • 이효연;노일섭;김진호;유장렬;이종석;김학진
    • 식물조직배양학회지
    • /
    • 제21권2호
    • /
    • pp.99-103
    • /
    • 1994
  • 비선택성 제초제인 bialaphos는 고등식물에 있어서 glutamine 합성을 억제하여 식물체를 고사 시키는 능력을 갖고 있다. 본 연구에서 acetylteansferase에 의해 encoding된 bialaphos 저항성 유전자(bar gene)는 세균(Pseudomonas sryngae pv tabaci)의 genomic DNA로부터 cloning된 것을 사용하였다. 수분시킨 담배의 화계에 일정한 시간별로 bar 유전자를 처리한 결과 수분 후 30-40시간 사이의 처리구 에서 형질전환 식물체가 가장 많이 얻어 졌다. 그러한 형질전환 식물체의 kanamycin과 bialaphos 저항성 형질은 자식후대(T$_1$, T$_2$)에 있어서도 우성형질로 유전되었으나 wild type의 담배는 상기의 약제를 처리 하였을때 전부 고사하였다. 그리고, T$_1$세대의 형질전환 식물체로부터 전 염색체 DNA를 추출하여 Southern 분석한 결과 bar 유전자가 식물의 염색체상에 안정하게 존재하는 것을 확인하였다. 이상의 결과로부터 담배의 수분, 수정 시기에 외부유전자인 bar를 화주에 처리함으로써 bialaphos 저항성 식물을 만들어낼 수 있었다.

  • PDF

2006년도 황색종 담배 병해발생 상황<단보> (Disease Severities of Flue-Cured Tobacco Plants Surveyed in Korea, 2006)

  • 이영근;임영구
    • 한국연초학회지
    • /
    • 제28권2호
    • /
    • pp.158-161
    • /
    • 2006
  • Main tobacco diseases were surveyed on major flue-cured leaf tobacco fields throughout South Korea in 2006. Mosaic caused by potato virus Y and bacterial wilt caused by Ralstonia solanacearum were most severe during harvest season. During last ten years, the damage by tobacco mosaic virus was reduced but the incidence of bacterial wilt increased. These changes of the disease incidences coincide with release time of the tobacco cultivar resistant to the tobacco mosaic virus but susceptible to bacterial wilt pathogen. Wild fire(Pseudomonas syringae pv. tabaci strain ungulate) occurred severely at Kangwon province, though the symptom of wild fire with yellow halo was not observed.

Plant Protective and Growth Promoting Effects of Seed Endophytes in Soybean Plants

  • Jiwon Kim;Seong-Ho Ahn;Ji Sun Yang;Seonwoo Choi;Ho Won Jung;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.513-521
    • /
    • 2023
  • Seed-borne diseases reduce not only the seed germination and seedling growth but also seed quality, resulting in the significant yield loss in crop production. Plant seed harbors diverse microbes termed endophytes other than pathogens inside it. However, their roles and application to agricultures were rarely understood and explored to date. Recently, we had isolated from soybean seeds culturable endophytes exhibiting in-vitro antagonistic activities against common bacterial and fungal seed-borne pathogens. In this study, we evaluated effects of seed treatment with endophytes on plant growth and protection against the common seed-borne pathogens: four fungal pathogens (Cercospora sojina, C. kikuchii, Septoria glycines, Diaporthe eres) and two bacterial pathogens (Xanthomonas axonopodis pv. glycines, Pseudomonas syringae pv. tabaci). Our experiments showed that treatment of soybean seeds with seed endophytes clearly offer protection against seed-borne pathogens. We also found that some of the endophytes promote plant growth in addition to the disease suppression. Taken together, our results demonstrate agricultural potential of seed endophytes in crop protection.

Theobroxide Treatment Inhibits Wild Fire Disease Occurrence in Nicotiana benthamiana by the Overexpression of Defense-related Genes

  • Ahn, Soon Young;Baek, Kwang-Hyun;Moon, Yong Sun;Yun, Hae Keun
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.110-115
    • /
    • 2013
  • Theobroxide, a novel compound isolated from a fungus Lasiodiplodia theobromae, stimulates potato tuber formation and induces flowering of morning glory by initiating the jasmonic acid synthesis pathway. To elucidate the effect of theobroxide on pathogen resistance in plants, Nicotiana benthamiana plants treated with theobroxide were immediately infiltrated with Pseudomonas syringae pv. tabaci. Exogenous application of theobroxide inhibited development of lesion symptoms, and growth of the bacterial cells was significantly retarded. Semiquantitative RT-PCRs using the primers of 18 defense-related genes were performed to investigate the molecular mechanisms of resistance. Among the genes, the theobroxide treatment increased the expression of patho-genesis-related protein 1a (PR1a), pathogenesis-related protein 1b (PR1b), glutathione S-transferase (GST), allen oxide cyclase (AOC), and lipoxyganase (LOX). All these data strongly indicate that theobroxide treatment inhibits disease development by faster induction of defense responses, which can be possible by the induction of defense-related genes including PR1a, PR1b, and GST triggered by the elevated jasmonic acid.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166

  • Ryu, Choong-Min;Choi, Hye Kyung;Lee, Chi-Ho;Murphy, John F.;Lee, Jung-Kee;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.182-192
    • /
    • 2013
  • Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.