• 제목/요약/키워드: Pseudomonas sp..Biodegradation

검색결과 68건 처리시간 0.022초

Plasmid- and Chromosome-Mediated Assimilation of Phenol and Cyanide in Pseudomonas sp. Strain PhCN

  • El-Deeb Bahig A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1068-1077
    • /
    • 2006
  • Pseudomonas sp. PhCN strain, which has the potential to utilize phenol and cyanide as a sole carbon and nitrogen source, was isolated. A comparison of the effect of cyanide on phenol degradation and vice versa by strain PhCN showed that the degradation time was significantly delayed by an increase in either phenol or cyanide concentration, and the greatest activities were obtained in basal medium containing a low concentration of cyanide and phenol. This strain contained two plasmids of approximately 120 kb (pPhCN-1) and 110 kb (pPhCN-2). Plasmid curing experiments produced a plasmid-free strain as well as strains containing either the 120- or the 110 kb plasmid. The strains were tested for their ability to utilize phenol and KCN. The results demonstrated that the ability to utilize phenol was encoded by the 120 kb plasmid, whereas the ability to utilize cyanide appeared to be encoded by the chromosome.

2,4,5-trichlorophenoxyacetic acid 를 분해하는 세균의 분리 (Isolation of 2,4,5-Trichlorophenoxyacetic Acid-Degrading Bacteria)

  • 박영두;음진성
    • 한국토양비료학회지
    • /
    • 제33권1호
    • /
    • pp.47-51
    • /
    • 2000
  • 화합물을 분해하는 우수균주 개발의 기초연구로서, 대전 근교 지역의 논과 밭에서 채취한 토양 표품으로부터 100균주의 세균을 분리하였고, 그 중 2,4,5-T를 단일 탄소원으로 하는 고체 최소 배지에서 잘 자라는 균주 19균주를 선별하였다. 이들 균주를 등정한 결과 Pseudomonas속이 11균주 Acinetobacter속이 4균주, Alcaligenes속이 1균주이고 3균주는 미동정되었다. Pseudomonas속으로 밝혀진 MU19와 MU92는 네가지 염소계 화합물들(2,4-D, 2,4,5-T, MCPA 그리고 3CB)을 모두 분해하는 것으로 나타났다. 최소 액체배지에서 배양한 경우 Acinetobacter로 동정된 MU38균주가 접종 48시간 후에 가장 높은 분해도를 나타내었고, MUl9, MU57, MU73과 MU92는 그 다음으로 높은 분해도를 나타냈다. 실험결과 선별된 19균주 중 Acinetobacter sp. MU38 그리고 Pseudomonas sp. MU19과 MU92는 염소계 방향쪽 화합물에 대한 넓은 분해능을 갖고 있으며, 특히 2,4,5-T에 대한 높은 분해도를 나타내는 것으로 조사되었다.

  • PDF

Pentachlorophenol을 분해하는 세균의 분리와 동정 (Isolation and Identification of Pentachlorophenol-degrading Bacteria)

  • 박영두;음진성
    • 한국토양비료학회지
    • /
    • 제33권4호
    • /
    • pp.261-265
    • /
    • 2000
  • 공해 문제를 유발하고 있는 Pentachlorophenol(PCP)와 2,4-dichlorophenoxyacetate(2,4-D)와 같은 난분해성의 염소계 방향족 화합물들을 폭 넓고 빨리 분해할 수 있는 우수 균주를 개발하기 위한 기초 연구로서, 대전, 청주, 전주 근교 지역에서 채취한 토양 표품으로부터 100균주의 세균을 분리하였다. 그 중 PCP를 단일 탄소와 에너지원으로 하는 고체 최소 배지에서 잘 자라는 균주 19균주를 선별하였다. 이들 균주를 동정한 결과 Pseudomonas속이 15균주, Acinetobacter속이 1균주, 3균주는 미동정되어 Pseudomonas속이 대부분을 차지하였다. 분해능이 비교적 좋은 것으로 알려진 Alcaligenes의 세균은 발견되지 않았다. Pseudomonas속으로 밝혀진 MU135, MU139, MU163과 MU184 네가지 염소계 화합물들(PCP, 2,4,-D, MCPA 그리고 3CB)을 모두 분해하는 것으로 나타났다. 최소 액체배지에서 배양한 경우 Pseudomonas sp. MU139 균주가 접종 72시간 후에 가장 높은 분해도를 나타내었고, Pseudomonas sp. Mu147, MU177, MU184 그리고 MU192는 그 다음으로 높은 분해도를 나타냈다. 실험결과 선별된 19 균주 중 Pseudomonas sp. Mu139와 Pseudomonas sp. MU184는 염소계 방향족 화합물에 대한 넓은 분해능을 갖고 있으며, 특히 PCP에 대한 높은 분해도를 나타내는 것으로 조사되어 우수 균주 개발의 좋은 재료로 이용될 수 있을 것으로 보인다.

  • PDF

Specific Biodegradation of Polychlorinated Biphenyls (PCBs) Facilitated by Plant Terpenoids

  • Jung, Kyung-Ja;Eungbin kim;So, Jae-Seong;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권1호
    • /
    • pp.61-66
    • /
    • 2001
  • The aim of this study was to examine how plant terpenoids, as natural growth substrates or inducers, would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. Degradation activities of the PCB congeners, 4,4-dichlorobiphenyl (4,4-DCBp) and 2,2-dichlorobiphenyl (2,2-DCBp), were initially monitored through a resting cell assay technique that could detect their degradation products. The PCB degraders, Pseudomonas ((S)-(-) limonene, p-cymene and $\alpha$-terpinene) whereas Arthrobacter sp. B1B could not grow on the terpenoids as a sole carbon source. The B1B strain grown on biphenyl exhibited good degradation activity for 4,4-DCBp and 2,2-DCBp, while the activity of strains P166 and T104 was about 25% that of the B1B strain, respectively. Concomitant GC analysis, however, demonstrated that strain T104, grown on (S)-(-) limonene, p-cymene and $\alpha$-terpinene, could degrade 4,4-DCBp up to 30%, equivalent to 50% of the biphenyl induction level. Moreover, strain T104 grown on (S)-(-) limonene, could also degrade 2,2-DCBp up to 30%. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate(s) for PCB biodegradation in the environment.

  • PDF

유기용매 내성 Pseudomonas sp. BCNU 106 균주의 외인성 트레할로스의 영향 (Effect of Exogenous Trehalose on the Solvent Tolerance of Pseudomonas sp. BCNU 106)

  • 최혜정;임보라;하상철;권기석;김동완;주우홍
    • 생명과학회지
    • /
    • 제27권8호
    • /
    • pp.945-950
    • /
    • 2017
  • 유기용매 내성 Pseudomonas sp. BCNU 106은 독성 용매에 의해 일부 생장이 제한되므로 다양한 생존전략이 필요하다. 이러한 한계를 극복하기 위한 하나의 전략으로 외인성 트레할로오스를 사용하는 것이다. Cyclohexane 존재하에 세포내 트레할로스 함량은 12시간 배양했을 때 181.88 mM로 가장 높게 측정되었고, 세포외 트레할로스 함량은 12시간에서 16시간 사이에 급격하게 감소하였다. 또한 1%(v/v) cyclohexane, hexane, propylbenzene 및 m-xylene 존재하에 0.1 M 트레할로스가 첨가된 LB 배지에서 Pseudomonas sp. BCNU 106 균주의 생장은 트레할로스가 첨가되지 않은 대조군에 비해 각각 89.94, 89.72, 91.25 및 118.9 배 증가하였으며, cyclohexane 및 hexane 존재하에서 0.05 M 트레할로스를 첨가했을 때 4시간 동안 각각 80과 90% 이상의 높은 생존율을 보였다. 이는 배지에 첨가된 트레할로스가 세포 내로 이동하면서 cyclohexane, hexane, propylbenzene 및 m-xylene 스트레스에 대해 방어작용을 한 것으로 보인다. 따라서 성장배지에 트레할로스를 첨가함에 따라 Pseudomonas sp. BCNU 106의 유기용매 내성이 향상되어 생물전환 및 생물분해에 대한 잠재적인 생물촉매로 사용 가능할 것이다.

Monitoring 4-Chlorobiphenyl-Degrading Bacteria in Soil Microcosms by Competitive Quantitative PCR

  • Lee, Soo-Youn;Song, Min-Sup;You, Kyung-Man;Kim, Bae-Hoon;Bang, Seong-Ho;Lee, In-Soo;Kim, Chi-Kyung;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • 제40권4호
    • /
    • pp.274-281
    • /
    • 2002
  • The competitive quantitative PCR method targeting pcbC gene was developed for monitoring 4-chlorobiphenyl(4CB)-degrading bacteria, Pseudomonas sp. strain DJ-12, in soil microcosms. The method involves extraction of DNA from soil contaminated with 4CB, PCR amplification of a pcbC gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the elec-trophoresed PCR product by densitometry. To test the adequacy of the method, Pseudomonas sp. strain DJ-12 was introduced into both contaminated and non-contaminated soil microcosms amended with 4CB. Pseudomonas sp. strain DJ-12 was monitored and quantified by a competitive quantitative PCR in comparison with 4CB degradation and the result was compared to those obtained by using the conventional cultivation method. We successfully detected and monitored 4CB-degrading bacteria in each microcosm and found a significant linear relationship between the number of 4CB-degrading bacteria and the capacity for 4CB biodegradation. The results of DNA spiking and cell-spreading experiments suggest that this competitive quantitative PCR method targeting the pcbC gene for monitoring 4CB- degrading bacteria appears to be rapid, sensitive and more suitable than the microbiological approach in estimating the capacity of 4CB biodegradation in environmental samples.

Biodegradation of toluene vapor by evaporative cooler model based biofilter

  • Vikrant, Kumar;Nagar, Harshil;Anand, Raja;Sharma, Anjney;Lee, Sang-Hun;Giri, Balendu Shekher;Kim, Ki-Hyun;Singh, Ram Sharan
    • 분석과학
    • /
    • 제31권2호
    • /
    • pp.57-64
    • /
    • 2018
  • The biodegradation of toluene vapor was investigated using a new type of biofilter equipped with a laboratory-scale evaporative cooler model packed with wood wool fibers (area: $360cm^2$). For the purpose of this study, the biofilter system was inoculated with Pseudomonas sp. RSST (MG 279053). The performance of this biofilter, assessed in terms of toluene removal efficiency (and elimination capacity), was as high as 99 % at a loading rate of $6g/h{\cdot}m^2$. The toluene removal efficiency decreased in an exponential manner with the increase in the loading rate. The cooler model-based biofilter was able to remove more than 99 % of toluene using Pseudomonas sp. RSST (MG 279053) as an effective inoculum. This biofilter is designed to operate under batch conditions for the removal of toluene in confined environments (e.g., automotive plants, boiler rooms in manufacturing facilities, and offshore drilling platforms).

Degradation of Fat, Oil, and Grease (FOGs) by Lipase-Producing Bacterium Pseudomonas sp. Strain D2D3

  • Shon, Ho-Kyong;Tian, Dan;Kwon, Dae-Young;Jin, Chang-Suk;Lee, Tae-Jong;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.583-591
    • /
    • 2002
  • Biodegradation of fat, oil, and grease (FOGs) plays an Important role in wastewater management and water pollution control. However, many industrial food-processing and food restaurants generate FOG-containing waste waters for which there Is no acceptable technology for their pretreatment. To solve these problems, this study evaluated the feasibility of effective FOG-degrading microorganisms on the biodegradation of olive oil and FOG-containing wastewater. Twenty-two strains capable of degrading FOGs were isolated from five FOG-contaminated sites for the evaluation of their FOG degradation capabilities. Among twenty-two strains tested, the lipase-producing Pseudomonas sp. strain D2D3 was selected for actual FOG wastewater treatment. Its biodegradability was performed at 3$0^{\circ}C$ and pH 8. The extent of FOG removal efficiency was varied for each FOG tested, being the highest for olive oil and animal fat (94.5% and 94.4%), and the lowest for safflower oil (62%). The addition of organic nitrogen sources such as yeast extract, soytone, and peptone enhanced the removal efficiency of FOGs, but the addition of the inorganic nitrogen nutrients such as $NH_4$Cl and $(NH_4)_2SO_4$ did not increase. The $KH_2PO_4$ sources in 0.25% to 0.5% concentrations showed more than 90% degradability. As a result, the main pathway for the oxidation of fatty acids results in the removal of two carbon atoms as acetyl-CoA with each reaction sequence: $\beta$-oxidation. Its lipase activity showed 38.5 U/g DCW using the optimal media after 9 h. Real wastewater and FOGs were used for determining the removal efficiency by using Pseudomonas sp. strain D2D3 bioadditive. The degradation by Pseudomonas sp. strain D2D3 was 41% higher than that of the naturally occurring bacteria. This result indicated that the use of isolated Pseudomonas sp. strain D2D3 in a bioaugmentating grease trap or other processes might possibly be sufficient to acclimate biological processes for degrading FOGs.

합성세제의 성분해에 관한 조사연구 (Studies on Biodegradation of Synthetic Detergents)

  • 권숙표;정용;심길순
    • 약학회지
    • /
    • 제21권4호
    • /
    • pp.193-199
    • /
    • 1977
  • ABS, Alkyl benzene sulfonate, persists for long periods in stream because of its resistance to biologic degradation. Its bio-degradation is very varied in the environments. This investigation was therefore undertaken in order to know the biodegradation of synthetic detergents which are comprising soft and hard forms from February 1976 to September 1976. The biodegradations by spontaneuos settling and aeration were determined. The reduction rates of ABS, DBS, and LAS were 9.8%, 13.7% and 10.4% by the settlings for 5 days at $25^{\circ}$ and 63.3%, 27.2%, and 43.9% by aeration respectively. It was not contributed effectively to biodegradate the synthetic detergents by the simulaneous incubation with micro-organisms isolated from sewage such as Enterobacter sp., E. coli, Bacillus sp., Flavobacterium sp., Pseudomonas sp., Staphylococcus sp., and etc. Tricking filter could also eliminate some amount of detergent. By the application of this investigation, it could be designed that detergents would be regulated in abuse in context with water pollution and be treated at a proper process in the sewage treatment plant to be installed.

  • PDF