• Title/Summary/Keyword: Pseudomonas sp. S-47

Search Result 21, Processing Time 0.026 seconds

Molecular Cloning and Analysis of Phosphate Specific Transport (pst) Operon from Serratia marcescens KCTC 2172 (Serratia marcescens KCTC 2172로부터 pst operon의 클로닝 및 해석)

  • Lee, Seung-Jin;Lee, Yong-Seok;Lee, Sang-Cheol;Park, In-Hye;Ahn, Soon-Cheol;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.566-572
    • /
    • 2009
  • A recombinant plasmid, pDH3, was obtained from the genomic library of Serattia marcescens KCTC 2172, and several recombinant subclones constructed from pDH3. The nucleotide sequence of a 5,137 bp segment, pPH4, was determined and three open reading frames were detected. The three ORFs encoded the phosphate specific transport (pst) operon, which was pstC, pstA, and pstB, with the same direction of transcription. Comparison of the pst operon of S. marcescens with that of other organisms revealed that the genes for pstS and phoU were missing. A potential CRP bonding site and pho box sequence was found in the upstream of the putative promoter at the regulatory region. Analysis of the nucleotide sequence showed that homology in amino acid sequences between the PstC protein and Yersinia sp., Vibrio sp., and Pseudomonas sp. were 49, 37 and 33%, respectively. The PstA protein and Yersinia sp., Vibrio sp., and Pseudomonas sp. showed homologies of 64, 51, and 47%, respectively. PstB protein and Methanocaldococcus sp., E. coli, and Mycoplasma sp. showed homologies of 60, 50, and 48%, respectively. The pst genes could be expressed in vivo and positively regulated by cAMP-CRP. The E. coli strain harboring plasmid pPH7, with pst genes, increased with the transport of phosphate.

Preliminary X-Ray Diffraction Study of Glutathione S-Transferase from Pseudomonas sp. DJ77

  • Choi, Heung-Soo;Woo, Ju-Rang;Lee, Jung-Hee;Chung, An-Sik;Ryu, Seong-Eon;Kim, Young-Chang;Chung, Yong-Je
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.296-298
    • /
    • 1997
  • A bacterial glutathione S-transferase from Pseudomonas sp. DJ77 has been crystallized. The crystals diffract to at least $2.3\;\AA$ resolution, and belong to the orthorhombic space group $P2_{1}2_{1}2_{1}$, with cell parameters $a=97.4\;\AA,\;b=100.3\;\AA$, and $c=46.0\;\AA$. There is one dimer molecule of pGST per crystallographic asymmetric unit. with the crystal volume per protein mass of $2.34\;\AA^3/dalton$ and a solvent content of about 47% (v/v).

  • PDF

Characterization of Nitroreductase Purified from TNT-degrading Bacterium, Pseudomonas sp. HK-6. (폭약 TNT를 분해하는 세균인 Pseudomonas SP. HK-6에서 분리정제된 Nitroreductase의 특성연구)

  • 호은미;강형일;오계헌
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.230-237
    • /
    • 2004
  • In this study nitroreductase from Pseudomonas sp. HK-6 capable of degrading 2,4,6-trinitrotoluene (TNT) was characterized. Through a series of purification process including ammonium sulfate precipitation, DEAE-sepharose, and Q-sepharose, three different fractions I, II, and III having the enzyme activity of NTRs whose molecular weights were approximately 27 kDa were detected in fractions from HK-6 cells. Specific activity of the three fractions were approximately 4.85 unit/mg, 5.47 unit/mg, and 5.01 unit/mg, and concentrated to 9.0-, 10.1-, and 9.3-fold compared to crude extract, respectively. The optimal pH and temperature for the three NTR fractions were approximately 7.5 and $30^{\circ}C$, respectively. Metal ions, $Ag^{+}$ , $Cu^{ 2+}$, $Hg^{2+}$ inhibited approximately 70% of enzymes activities of all NTR, while $Fe^{2+}$ did not stimulate or inhibit the activities. Monitoring the effect of chemicals on the enzyme activity revealed that those NTR fractions lost enzyme activity in presence of $\beta$-mercaptoethanol, but were a little influenced by dithiothreitol, EDTA and NaCl. The three NTR fractions demonstrated enzyme activities for nitrobenzene and RDX as well as TNT.

Reduction of Hydrogen Sulphide in Chicken Manure by Immobilized Sulphur Oxidising Bacteria Isolated from Hot Spring

  • Hidayat, M.Y.;Saud, H.M.;Samsudin, A.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • The rapid development of the poultry industry has led to the production of large amounts of manure, which produce substances like hydrogen sulfide ($H_2S$) that contribute to odor pollution. $H_2S$ is a highly undesirable gas component and its removal from the environment is therefore necessary. Sulfur-oxidizing bacteria (SOB) are widely known to remove contaminating $H_2S$ due to their ability to oxidize reduced sulfur compounds. In this study, three potential SOB (designated AH18, AH25, and AH28) that were previously isolated from a hot spring in Malaysia were identified by 16S rRNA gene analysis. Laboratory-scale biological deodorization experiments were conducted to test the performance of the three isolates-in the form of pure or mixed cultures, with the cells immobilized onto alginate as a carrier-in reducing the $H_2S$ from chicken manure. On the basis of 16S rRNA phylogenetic analysis, isolate AH18 was identified as Pseudomonas sp., whereas isolates AH25 and AH28 were identified as Achromobacter sp. The most active deodorizing isolate was AH18, with an $H_2S$ reduction rate of 74.7% (p < 0.05). Meanwhile, the reduction rates for isolates AH25 and AH28 were 54.2% and 60.8% (p > 0.05), respectively. However, the $H_2S$ removal performance was enhanced in the mixed culture, with a reduction rate of 81.9% (p < 0.05). In conclusion, the three potential SOB isolates were capable of reducing the $H_2S$ from chicken manure in the form of a pure culture immobilized on alginate, and the reduction performance was enhanced in the mixed culture.

Antimicrobial Activity of Prodigiosin from Serratia sp. PDGS120915 Against Intestinal Pathogenic Bacteria

  • Ji, Keunho;Kim, Young Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.459-464
    • /
    • 2019
  • This study aimed to identify and characterize the antimicrobial activity of prodigiosin produced by Serratia sp. $PDGS^{120915}$ isolated from stream water in Busan, Korea; the identification was performed using phonological, biochemical, and molecular techniques, including 16S rRNA sequence analysis. Prodigiosin from the bacterial culture was purified by high-performance liquid chromatography (HPLC), and its antimicrobial activity and minimum inhibitory concentrations (MICs) were evaluated against 10 intestinal pathogenic gram-positive and negative bacteria. The results revealed that the isolated prodigiosin exhibited high antimicrobial activity against Listeria monocytogenes, Bacillus cereus, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, and Vibrio parahaemolyticus; further, the isolated prodigiosin showed minimum inhibitory concentrations (MICs) between $3{\mu}g/ml$ and 30 mg/ml, but they were not active against Bacillus subtilis, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli. In conclusion, prodigiosin isolated from Serratia sp. $PDGS^{120915}$ showed high antimicrobial activity against intestinal pathogenic bacteria and has potential applications in the development of new antimicrobial agents.

Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India

  • Kama, Ahmed;Shaik, Anver Basha;Kumar, C. Ganesh;Mongolla, Poornima;Rani, P. Usha;Krishna, K.V.S. Rama;Mamidyala, Suman Kumar;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In an ongoing survey of the bioactive potential of microorganisms from Ladakh, India, the culture medium of a bacterial strain of a new Pseudomonas sp., strain ICTB-745, isolated from an alkaline soil sample collected from Leh, Ladakh, India, was found to contain metabolites that exhibited broad-spectrum antimicrobial and biosurfactant activities. Bioactivity-guided purification resulted in the isolation of four bioactive compounds. Their chemical structures were elucidated by $^1H$ and $^{13}C$ NMR, 2D-NMR (HMBC, HSQC, $^1H$,$^1H$-COSY, and DEPT-135), FT-IR, and mass spectroscopic methods, and were identified as 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), rhamnolipid-1 (RL-1), and rhamnolipid-2 (RL-2). These metabolites exhibited various biological activities like antimicrobial and efficient cytotoxic potencies against different human tumor cell lines such as HeLa, HepG2, A549, and MDA MB 231. RL-1 and RL-2 exhibited a dose-dependent antifeedant activity against Spodoptera litura, producing about 82.06% and 73.66% antifeedant activity, whereas PCA showed a moderate antifeedant activity (63.67%) at 60 ${\mu}g/cm^2$ area of castor leaf. Furthermore, PCA, RL-1, and RL-2 exhibited about 65%, 52%, and 47% mortality, respectively, against Rhyzopertha dominica at 20 ${\mu}g/ml$. This is the first report of rhamnolipids as antifeedant metabolites against Spodoptera litura and as insecticidal metabolites against Rhyzopertha dominica. The metabolites from Pseudomonas sp. strain ICTB-745 have interesting potential for use as a biopesticide in pest control programs.