Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.5.566

Molecular Cloning and Analysis of Phosphate Specific Transport (pst) Operon from Serratia marcescens KCTC 2172  

Lee, Seung-Jin (Department of Biotechnology, College of Natural Resources and Life Science)
Lee, Yong-Seok (Department of Biotechnology, College of Natural Resources and Life Science)
Lee, Sang-Cheol (Department of Biotechnology, College of Natural Resources and Life Science)
Park, In-Hye (Department of Biotechnology, College of Natural Resources and Life Science)
Ahn, Soon-Cheol (School of Medicine, College of Medicine, Pusan National University)
Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science)
Publication Information
Journal of Life Science / v.19, no.5, 2009 , pp. 566-572 More about this Journal
Abstract
A recombinant plasmid, pDH3, was obtained from the genomic library of Serattia marcescens KCTC 2172, and several recombinant subclones constructed from pDH3. The nucleotide sequence of a 5,137 bp segment, pPH4, was determined and three open reading frames were detected. The three ORFs encoded the phosphate specific transport (pst) operon, which was pstC, pstA, and pstB, with the same direction of transcription. Comparison of the pst operon of S. marcescens with that of other organisms revealed that the genes for pstS and phoU were missing. A potential CRP bonding site and pho box sequence was found in the upstream of the putative promoter at the regulatory region. Analysis of the nucleotide sequence showed that homology in amino acid sequences between the PstC protein and Yersinia sp., Vibrio sp., and Pseudomonas sp. were 49, 37 and 33%, respectively. The PstA protein and Yersinia sp., Vibrio sp., and Pseudomonas sp. showed homologies of 64, 51, and 47%, respectively. PstB protein and Methanocaldococcus sp., E. coli, and Mycoplasma sp. showed homologies of 60, 50, and 48%, respectively. The pst genes could be expressed in vivo and positively regulated by cAMP-CRP. The E. coli strain harboring plasmid pPH7, with pst genes, increased with the transport of phosphate.
Keywords
Serratia marcescens; phosphate specific transport; pst operon; pho box;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Qi, Y., Y. Kobayashi, and F. M. Hulett. 1997. The pst operon of Bacillus subtilis has a phosphate-related promoter and is involved in phosphate transport but not in regulation of the pho regulon. J. Bacteriol. 179, 2534-2539
2 Sambrook, J. and D. W. Russel. 2001. Molecular cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York., USA
3 Stephen, J., V. Dien, S.. Keyhani, C. Yang, and J. D. Keasling. 1997. Manipulation of independent synthesis and degradation of phosphate in Escherichia coli for phosphate secretion from the cell. Appl. Environ. Microbiol. 63, 1689-1695
4 Wu, H., H. Kosaka, J. Kato, A. Kuroda, T. Ikeda, N. Kakiguchi, and H. Ohtake. 1999. Cloning and characterization of Pseudomonas putida genes encoding the phosphate-specific transport system. J. Biosci. Bioeng. 87, 273-279   DOI   ScienceOn
5 Yoo, J. S., H. S. Kim, S. Y. Chung, and Y. L. Choi. 2000. Characterization of crp, the cyclic AMP receptor protein gene of Serratia marcescens KCTC 2172. J. Microbiol. Biotechnol. 10, 670-676
6 Kato, J., K. Yamada, A. Muramatsu, and H. Ohtake. 1993. Genetic improvement of Escherichia coli for enhanced biological removal of phosphate from wastewater. Appl. Environ. Microbiol. 59, 3744-3749
7 Lee, S. J., O. R. Song, Y. C. Lee, Y. C. and Y. L. Choi. 2003. Molecular characterization of polyphosphate kinase (ppk) gene from Serratia marcescens. Biotechnol. Lett. 25, 191-197   DOI   ScienceOn
8 Lee, S.J., Y. S. Lee, Y. C. Lee, and Y. L. Choi. 2006. Molecular characterization of polyphosphate (PolyP) operon from Serratia marcescens. J. Basic Microbiol. 46, 108-115   DOI   ScienceOn
9 Magota, K., N. Otsuji, T. Miki, T. Horiuchi, S. Tsunasawa, J. Kondo, F. Sakiyama, M. Amemura, T. Morita, H. Shinagawa, and A. Nakata. 1984. Nucleotide sequence of the phoS gene, the structural gene for the phosphate-binding protein of Escherichia coli. J. Bacteriol. 157, 909-917
10 Mathew, J. A., Y. P. Tan, P. S. Srinivasa Rao, T. M. Lim, and K. Y. Leung. 2001. Edwardsiella tarda mutant defective in siderophore production, motility, serum resistance and catalase activity. Microbiology 147, 449-457
11 Monds, R. D., M. W. Silby, and H. K. Mahanty. 2001. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PAI47.2. Mol. Microbiol. 42, 415-426   DOI   ScienceOn
12 Nakata, T., Y. Sakai, K. Shibata, J. Kato, A. Kuroda, and H. Ohtake. 1996. Molecular analysis of the phosphate-specific transport operon of Pseudomonas aeruginosa. Mol. Genet. Genomomics 250, 692-698
13 Braibant, M., P. Lefevre, L. Wit, P. Peirs, J. Ooms, K. Huhgen, A. B.. Anderson, and J. A. Content. 1996. Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transport homologous to the Escherichia coli Pst system. Gene 176, 171-176   DOI   ScienceOn
14 Novak, R., A. Cauwels, E. Charpentier, and E. Tuomanen. 1999. Identification of a Streptococcus pneumoniae gene locus encoding proteins of an ABC phosphate transporter and a two-component regulatory system. J. Bacteriol. 181, 1126-1133
15 Allenby, N. E. E., N. O’Connor, Z. Pragai, N. M. Carter, M. Miethke, S. Engelmann, M. Hecker, A. Wipat, A. C. Ward, and C. R. Harwood. 2004. Post-transcriptional regulation of the Bacillus subtilis pst operon encoding a phosphate-specific ABC transporter. Microbiology 150, 2619-2628   DOI   ScienceOn
16 Atalla, A. and A. Schumann. 2003. The pst operon of Bacillus subtilis is specially induced by alkali stress. J. Bacteriol. 185, 5019-5022   DOI   ScienceOn
17 Ficsher, R. J., S. Oehmcke, U. Meyer, M. Mix, K. Schwarz, T. Fielder, and H. Barl. 2006. Transcription of the pst operon of Clostridium acetobutyricum is dependent on phosphate concentration and pH. J. Bacteriol. 188, 5469-5478   DOI   ScienceOn
18 Gal, S. W., Y. J. Choi, C. Y. Kim, Y. H. Cheong, J. D. Bahk, and M. J. Cho. 1998. Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC 2172 and its proteolytic cleavage into an active 35-kDa enzyme. FEMS Microbiol. Lett. 160, 151-158   DOI
19 Hadimann, A., L. L. Daniels, and B. L. Wanner. 1998. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J. Bacteriol. 180, 1277-1286
20 Harris, R. M., D. C. Webb, S. M. Howitt, and G. B. Cox. 2001. Characterization of PitA and PitB from Escherichia coli. J. Bacteriol. 183, 5008-5014   DOI   ScienceOn
21 Jenkins, D. and V. Tandoi. 1991. The applied microbiology of enhanced biological phosphate removal-accomplishments and needs. Water Res. 25, 1471-1478   DOI   ScienceOn