• 제목/요약/키워드: Pseudomonas sp. MBEL21

검색결과 3건 처리시간 0.018초

신규 Pseudomonas sp. MBEL21 균주의 Polyhydroxyalkanoates 생산 특성 (Isolation and Characteristics of Polyhydroxyalkanoates Producing Pseudomonas sp. MBEL21)

  • 최종일;이승환;이상엽
    • 한국미생물·생명공학회지
    • /
    • 제32권2호
    • /
    • pp.123-127
    • /
    • 2004
  • 토양으로부터 oleic acid 를 탄소원으로 이용하여 MCL-PHA의 생산능이 우수한 균주를 분리하여 Pseudomonas sp. MBEL21이라 명명하였다. Pseudomonas sp. MBEL21의 PHA함량을 증가시키기 위하여 여러 가지 필수 영양분의 제한 조건에서 배양한 결과, 인산이 제한된 조건에서 가장 높은 함량의 PHA를 축적하였다. 고농도의 MCL-PHA생산을 위한 Pseudomonas sp. MBEL21의 유가식 배양 전략을 개발하여 28.1 wt%의 함량으로 23 g/L. MCL-PHA를 생산하였다. 또한, 분리된 Pseudomonas sp. MBEL21을 olive oil을 탄소원으로 이용하여 배양한 결과 9.3 wt%의 PHA가 축적되어졌으며, MCL-hydroxyalkanoate와 함께 3-hyoxy-butyrate 의 단량체들로 이루어진 PHA가 확인되어졌다. 이러한 결과들은 분리된 신규 Pseudomonas sp. MBEL21이 저가의 olive oil로부터 생분해성 탄성체의 응용분야를 갖는 MCL-PHA를 효율적으로 생산할 수 있다는 것을 보여준다.

재조합 대장균에서 수크로즈로부터의 젖산을 모노머로 함유한 폴리하이드록시알칸산 생산 연구 (Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli from Sucrose)

  • 오영훈;강경희;신지훈;송봉근;이승환;이상엽;박시재
    • KSBB Journal
    • /
    • 제29권6호
    • /
    • pp.443-447
    • /
    • 2014
  • Biosynthesis of lactate-containing polyhydroxyalkanoates (PHAs) was examined in recombinant Escherichia coli W strain from sucrose. The Pseudomonas sp. MBEL 6-19 phaC1437 gene and the Clostridium propionicum pct540 gene, which encode engineered Pseudomonas sp. MBEL 6-19 PHA synthase 1 ($PhaC1_{Ps6-19}$) and engineered C. propionicum propionyl-CoA transferase ($Pct_{Cp}$), respectively, were expressed in E. coli W to construct key metabolic pathway to produce poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)]. The recombinant E. coli W expressing the phaC1437 gene and the pct540 gene could synthesize P(3HB-co-13mol%LA) up to the polymer content of 31.3 wt% when it was cultured in chemically defined MR medium containing 20 g/L of sucrose and 2 g/L of sodium 3-hydroxybutyrate. When Ralstonia eutropha phaAB genes were additionally expressed to provide 3-hydroxybutyrate-CoA (3HB-CoA) from sucrose, P(3HB-co-16mol%LA) could be synthesized from sucrose as a sole carbon source without supplement of sodium 3-hydroxybutyrate in culture medium, but the PHA content was decreased to 12.2 wt%. The molecular weight of P(3HB-co-16 mol%LA) synthesized in E. coli W using sucrose as carbon source were $1.53{\times}10^4$ ($M_n$) and $2.78{\times}10^4$ ($M_w$), respectively, which are not different from those that have previously been reported by other recombinant E. coli strains. Engineered E. coli strains developed in this study should be useful for the production of lactate-containing PHAs from sucrose, one of the most abundant and least expensive carbon sources.

재조합 대장균에서 새로운 코엔자임 에이 트랜스퍼레이즈를 이용한 젖산을 모노머로 함유한 폴리하이드록시알칸산 생산 연구 (Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli by Employing New CoA Transferases)

  • 김유진;채철기;강경희;오영훈;주정찬;송봉근;이상엽;박시재
    • KSBB Journal
    • /
    • 제31권1호
    • /
    • pp.27-32
    • /
    • 2016
  • Several CoA transferases from Clostridium beijerinckii, C. perfringens and Klebsiella pneumoniae were examined for biosynthesis of lactate-containing polyhydroxyalkanoates (PHAs) in recombinant Escherichia coli XL1-Blue strain. The CB3819 gene and the CB4543 gene from C. beijerinckii, the pct gene from C. perfringens and the pct gene from K. pneumoniae, which encodes putative CoA transferase gene, respectively, was co-expressed with the Pseudomonas sp. MBEL 6-19 phaC1437 gene encoding engineered Pseudomonas sp. MBEL 6-19 PHA synthase 1 ($PhaC1_{Ps6-19}$) to examine its activity for the construction of key metabolic pathway to produce poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)]. The recombinant E. coli XL1-Blue expressing the phaC1437 gene and CB3819 gene synthesized poly(3-hydroxybutyrate) [P(3HB)] homopolymer to the P(3HB) content of 60.5 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 3-hydroxybutyrate. Expression of the phaC1437 gene and CB4543 gene in recombinant E. coli XL1-Blue also produced P(3HB) homopolymer to the P(3HB) content of 51.2 wt% in the same culture condition. Expression of the phaC1437 gene and the K. pneumoniae pct gene in recombinant E. coli XL1-Blue could not result in the production of PHAs in the same culture condition. However, the recombinant E. coli XL1-Blue expressing the phaC1437 gene and the C. perfringens gene could produce poly(3-hydroxybutyrate-co-lactate [P(86.4mol%3HB-co-13.7 mol%LA) up to the PHA content of 10.6 wt% in the same culture condition. Newly examined CoA transfereases in this study may be useful for the construction of engineered E. coli strains to produce PHA containing novel monomer such lactate.