• Title/Summary/Keyword: Pseudomonas sp

Search Result 732, Processing Time 0.022 seconds

Biodegradative Characteristics of Benzoate and m-Toluate by Pseudomonas sp. (Pseudomonas sp.에 의한 Benzoate와 m-Toluate 의 분해특성)

  • 정준영;김교창
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 1994
  • From 120 soil and activated sludge, the strains able to grow on benzoate and m-Toluate have been isolated after selective enrichment which were later identified as Psudomonas sp. according to its morphological and biochemical characteristics. Ben-2 strain contained two plasmid DNA having about 120 Kb and below 2.0 Kb by agarose gel electrophoresis. Form the comparative investigation of catechol 1,2-oxygenase and catechol 2,3-oxygenase activities in Ben-2 strain and its cured strain, Ben-2 strain has both of these two enzymes while cured strain has catechol 1,2-oxygenase only.

  • PDF

Nucleotide Sequence and Homology Analysis of phnC Gene Encoding Glutathione S-transferase from Pseudomonas sp.DJ77 (Pseudomonas sp. DJ77에서 Glutathione S-transferase를 암호하는 phnC 유전자의 염기서열과 상동성 분석)

  • 우희종;신명수;김성재;정용제;정안식;박광균;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.86-91
    • /
    • 1997
  • Pseudomonas sp. DJ77로부터 클로닝된 glutathione S-transferase 유전자(phnC)의 염기서열을 결정하였다. 603bp의 open reading frame(ORF)이 존재하였고 개시코돈 앞에서 Shine-Dalgarno sequence를, 종결코돈 뒤에서는 terminator sequence를 발견하였다. phnC 유전자에서 만들어지는 phnC 단백질은 21,416 Da으로 SDS-polyacrylamide gel 전기영동 결과와 일치하였다. PhnC는 Bulkholderia cepacia LB400, Cycloclasticus oligotrophus RB1의 GST와 각각 53.7%, 49%의 높은 상동성을 나타냈다. 아미노산 서열의 상동성과 필수잔기들의 존재유무로 판단할 때 PhnC GST는 theta class GSTs와 진화적으로 유연관계가 높았지만 alpha, mu, pi, sigma class GSTs에서 구조적, 기능적으로 중요하다고 알려진 아미노산 잔기들이 PhnC GST에도 보존되어 있었다. 또한, phnC 유전자의 위치가 C. oligotrophus RB1, B. cepacia LB400 등의 GST 유전자 위치와 유사하다는 점에서 PhnC 효소는 난분해성 방향족 탄화수소의 분해에 관여하는 것으로 생각된다.

  • PDF

Development of Simple Colorimetric Method for Detecting Contamination of Liquid Spawn of Oyster Mushroom by pH Indicator (pH지시약을 이용한 느타리버섯 액체종균 오염 간이진단법 개발)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • For the detection of contaminated liquid spawn, we selected suitable medium, indicator and developed method of diagnosis. The growth of pathogenic bacteria, Pseudomonas sp., and fungi, Trichoderma sp., in YPL media was better than in PDA and NA. In addition, the changes of color and absorbance of media were obviously showed when contaminated liquid spawn by pathogenic bacteria and fungi was incubated on YPL including phenol red for 48 hour at $25^{\circ}C$. The color of YPLP after incubating of infected liquid spawn by Pseudomonas sp. and Trichoderma sp. were changed from orange to red and to scarlet, respectively. Whereas, the color of YPLP after incubation of only Pleurotus ostreatus indicated yellow at liquid spawn. Therefore, it is possible to easily distinguish contaminated liquid spawn by color of change in YPLP.

Optimum cultivation conditions for mass production of antagonistic bacterium Alcaligenes sp. HC12 effective in antagonistic of browning disease caused by Pseudomonas agarici (버섯 세균성회색무늬병균(Pseudomonas agarici)에 대한 길항 세균 Alcaligenes sp. HC12의 대량배양을 위한 최적 배양조건)

  • Lee, Chan-Jung;Moon, Ji-Won;Cheong, Jong-Chun
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.191-196
    • /
    • 2016
  • This study was conducted to investigate optimum conditions for mass production of ntagonistic microbes Alcaligenes sp. HC12. Alcaligenes sp. HC12 had a potent biological control agent to control browning disease caused by Pseudomonas agarici. Alcaligenes sp. HC12 markedly showed the antagonistic activity against Pseudomonas agarici, the most destructive pathogen of cultivated mushrooms. To define the optimum conditions for the mass production of the Alcaligenes sp. HC12, we have investigated optimum culture conditions and effects of various nutrient source on the bacterial growth. The optimum initial pH and temperature were determined as pH 9.0 and $30^{\circ}$, respectively. The optimal concentration of medium elements for the growth of pathogen inhibitor bacterium(Alcaligenes sp. HC12) was determined as follows: 0.5% dextrine, 1.5% yest extract, 1.0% $NaNO_3$, 0.5% $KH_2PO_4$, and 1.5% asparagine.

Transfer RP4::Mu cts and RP4::mini-Mu from E. coli to Pseudomonas sp. (RP4::Mu cts 및 RP4::mini-Mu Pseudomonas sp.로의 전달)

  • 고윤원;허연주;이영록
    • Korean Journal of Microbiology
    • /
    • v.26 no.3
    • /
    • pp.173-180
    • /
    • 1988
  • Chromosomal gene transferable hybrid plasmids, RP4::Mu cts and RP4::mini-Mu, were transferred by conjugation from E. coli to Pseudomonas strains. In order to use for recipient cells of RP4::Mu cts and RP4:: mini-Mu, plasmid-free Pseudomonas strains were characterized for their antobiotic resistance, aromatic hydrocarbon utility and degradation patterns of chlorinated herbicide. Transfer frequencies of RP4::mini-Mu exhibited about $10^{-2}$ to $10^{-4}$, while those of RP4::Mu cts exhibited very low value of $10^{-7}$ in recipients tested except Pseudomonas aeruginosa KU557. Existance of hybrid plasmids in Pseudomonas transconjugants were identified by their antibiotic resistance and agarose gel electrophoresis. In case of RP4::Mu cts transconjugants it was also confirmed by demonstrating that they were capable of releasing phage and forming plaques at $43^{\circ}C$. Plaque forming unit of the transconjugants was about $10^{5}$. It was shown by the stability test that RP4::Mu cts and RP4::mini-Mu in Pseudomonas were relatively stable.

  • PDF

Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098. (생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성)

  • 이종태;김동환;도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.515-522
    • /
    • 1998
  • Plant root rotting fungi, Fusarium solani are suppressed their growth by the chitinase which is produced from the antagonistic soil bacteria. The chitinase producable antagonistic bacterium Pseudomonas sp. 3098 was selected as a powerful biocontrol agent of F. solani from ginseng rhizosphere. The antagonistic Pseudomonas sp. 3098 was able to produce a large amount of extracellular chitinase which is key enzyme in the decomposition of fusarial hypal walls. The chitinase was purified from cultural filtrate of Pseudomonas sp. 3098 by the procedure of ammonium sulfate precipitation, anion exchange chromatography, gel filtration on Bio-Gel P-100, and 1st and 2nd hydroxyapatite chromatography. The molecular mass of the purified enzyme was ca. 45 kDa on SDS-FAGE. The optimal pH and temperature for the activity of purified chitinase were 5.0 and 45$^{\circ}C$, respectively. The enzyme was stable in pH range of 5.0 to 9.0 up to 5$0^{\circ}C$ The enzyme was significantly inhibited by metal compounds such as FeCl$_2$, AgNO$_3$ and HgCl$_2$, and was slightly inhibited by p-CMB, iodoacetic acid, urea, 2,4-DNP and EDTA. The enzyme had ability of digestion on colloidal chitin and chitin from shrimp shell, but could not digest chitosan and chitin from crab shell. Km value of the enzyme was 0.11% on colloidal chitin, and the maximum hydrolysis rate of the enzyme was 34% on colloidal chitin.

  • PDF

Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 171 (Pseudomonas sp. BCNU 171이 생산하는 유기용매 내성 리파아제)

  • Choi, Hye Jung;Kwon, Gi-Seok;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.345-348
    • /
    • 2015
  • An organic solvent stable lipase from solvent-tolerant Pseudomonas sp. BCNU 171 had an optimal pH of 8 and an optimal temperature of 37℃. This crude extracellular lipase from BCNU 171 exhibited increased stability in the presence of various types of solvents at high concentrations (25%, v/v). The lipase stability was found to be highest in the presence of xylene (137%), followed by toluene (131%), octane (130%), and butanol (104%). Overall, BCNU 171 lipase tended to be more stable than immobilized commercial lipase (Novozyme435) in the presence of organic solvents. Furthermore, BCNU 171 lipase maintained about 90% of its enzyme original activity in the presence of NH4+, Na+, Ba2+, Hg2+, Ni2+, Cu2+, and Ca2+ion and significantly increased its enzyme activity in the presence of various emulsifying agents. Thus, the organic solvent stable lipase from Pseudomonas sp. BCNU 171 could be usable as a potential whole cell biocatalyst and for synthetic applications of enzymes for industrial chemical processes in organic solvents without using immobilization.

Production of Salicylic Acid from Naphthalene by Immobilized Pseudomonas sp. Strain NGK1

  • Shinde, Manohar;Kim, Chi-Kyung;Karegoudar, Timmanagouda-Baramanagouda
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.482-487
    • /
    • 1999
  • The Pseudomonas sp. strain NGK1 (NCIM 5120) was immobilized in calcium alginate, agar, and polyacrylamide gel matrices. The salicylic acid-producing capacity of freely suspended cells was compared with immobilized cells in batches with a shake culture and continuous culture system in a packed bed reactor. Freely suspended cells ($4\times10^{10}cfu/ml$) produced 12 mM of salicylic acid, whereas cells immobilized in calcium alginate ($1.8\times10^{11}$cfu/g beads), agar ($1.8\times10^{11}$cfu/g beads), and polyacrylamide ($1.6\times10^{11}$cfu/g beads) produced 15, 11, and 16mM of salicylic acid, respectively, from naphthalene at an initial concentration of 25 mM. The continuous production of salicylic acid from naphthalene was investigated in a continuous packed bed reactor with two different cell populations. The longevity of the salicylic acid-producing activity of the immobilized cells from naphthalene was also studied in semi continuous fermentations. The immobilized cells could be reused 18, 13, and more than 20 times without losing salicylic acid-producing activity in calcium alginate-,agar-, and polyacrylamide-entrapped cells, respectively. The study reveals a more efficient utilization of naphthalene and salicylic acid production by the immobilized Pseudomonas sp. strain NGK1 as compared to the free cells.

  • PDF

Compositional Analysis and Some Properties of Biosurfactant from Pseudomonas sp. SW1 (Pseudomonas sp. Sw1이 생산하는 Biosurfactant의 조성 및 특성)

  • Suk, Wan-Su;Lim, Eun-Gyoung;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.41-45
    • /
    • 1999
  • A tentative composition and some properties of biosurfactants, type I and type II, from Pseudomonas sp. SW1 are described. Biosurfactant type I and II are soluble in water, dichloromethane, chloroform, and a mixture of chloroform and methanol, respectively. The UV absorption spectrum of biosurfactants showed three characteristic peaks in the range of 212, 250 and 365nm, respectively. As a result of IR spectroscopy, GC/MS analysis and biochemical analysis, biosurfactant type I was a polymeric biosurfactant containing carbohydrate, lipid and protein. The carbohydrate was characterized as rhamnose. The lipid part consists of $C_{14}-C_{23}$ fatty acid when analyzed by GC/MS. The biosurfactant type II was a rhamnolipid consisting of carbohydrate and lipid.

  • PDF

Remediation of PAH-Polluted Soil by Pseudomonas sp. Adhered on PU Foam (PU매체에 부착한 유류분해 bacteria를 이용한 오염토양 처리)

  • Cho Dae-Chul;Huh Nam-Soo;Kwon Sung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.458-464
    • /
    • 2006
  • Bioremediation has been recognized as one of the best tools for hydrocarbon contaminated soil and nearby groundwater which had been heavily polluted in industrial areas. Degradation of PAHs in PAH-polluted loam soil were investigated under polyurethane foam environment with adsorbed bacteria Pseudomonas sp. (KCCM 40055) in order to acquire vital data for the environmentally-friendly process and material. macroporous commercial polyurethane foam that is widely used for microbial attachment in such as sewage treatment was selected for experiments. We also examined the microbial adherence upon the media. SR9-35C/G among the PU samples showed the highest degree of attachment and bioconversion. The conversion efficiency increased with moisture content of soil.

  • PDF