• Title/Summary/Keyword: Pseudo-inverse Matrix

Search Result 38, Processing Time 0.021 seconds

Free Vibration Analysis of a T Joint Using Thin-Walled Beam and Shell Elements (박판보 요소와 셸 요소를 이용한 T 조인트 진동 해석)

  • Kim, Jin-Hong;Kim, Hyeon-Seok;Kim, Yun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2334-2343
    • /
    • 2000
  • This paper proposes an efficient beam-shell modeling technique for the free vibration analysis of a T-joint thin-walled beam structure. Except a small portion of a T-joint which is modeled by shell elements, the structure is modeled by thin-walled beam elements that can describe warping and distortion. In order to match the shell and thin-walled beam elements at the interface of the dissimilar elements, a technique based on a pseudo inverse matrix is formulated. This paper also examines the role of the thin-walled element taking into account the distortion and warping deformation degrees of freedom in predicting accurately the dynamic characteristics of a T-joint thin-walled structure.

A Study on the Hydraulic Excitation Forces Using Transfer Function and Operational Measured Data for the Centrifugal Pump (전달함수와 진동응답 측정에 의한 원심펌프에서의 유체력 특성에 관한 연구)

  • Choi, Bok-Lok;Park, Jin-Moo;Kim, Kwang-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1931-1939
    • /
    • 2000
  • Operating excitation forces of the linear vibratory system are normally determined by direct measurement techniques using load cells, strain gauges, etc. But, hydraulic forces of the rotating turbomachinery such as centrifugal pumps are exerted on an impeller due to asymmety of the flow by the interaction between pump impeller and volute. So, investigations of wide range of hydraulic designs and geometric deviations are difficult by direct method. This paper presents a hybrid approach for fourier transformed operational excitation forces, which uses pseudo-inverse matrix of the transfer matrix for the system and the measured vibrational data with standard installed pump. The determination of the transfer function matrix is based on a linear rotor/stationary system and steady state harmonic response in finite element analysis. And, vibrational data is collected in both vertical and horizontal directions at inboard and outboard bearing housings. The results of the process may be enhanced by making acceleration measurements at many more locations than there are forces to be determined.

A New Recursive Least-Squares Algorithm based on Matrix Pseudo Inverses (ICCAS 2003)

  • Quan, Zhonghua;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.927-931
    • /
    • 2003
  • In this paper, a new Recursive Least-Squares(RLS) algorithm based on matrix pseudo-inverses is presented. The aim is to use the proposed new RLS algorithm for not only the over-determined but also the under-determined estimation problem. Compared with previous results, e.g., Jie Zhou et al., the derivation of the proposed recursive form is much easier, and the recursion form is also much simpler. Furthermore, it is shown by simulations that the proposed RLS algorithm is more efficient and numerically stable than the existing algorithms.

  • PDF

Analysis of Practical Dynamic Force of Structure with Inverse Problem (역문제에 의한 구조물의 실동하중 해석)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

BCDR algorithm for network estimation based on pseudo-likelihood with parallelization using GPU (유사가능도 기반의 네트워크 추정 모형에 대한 GPU 병렬화 BCDR 알고리즘)

  • Kim, Byungsoo;Yu, Donghyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.381-394
    • /
    • 2016
  • Graphical model represents conditional dependencies between variables as a graph with nodes and edges. It is widely used in various fields including physics, economics, and biology to describe complex association. Conditional dependencies can be estimated from a inverse covariance matrix, where zero off-diagonal elements denote conditional independence of corresponding variables. This paper proposes a efficient BCDR (block coordinate descent with random permutation) algorithm using graphics processing units and random permutation for the CONCORD (convex correlation selection method) based on the BCD (block coordinate descent) algorithm, which estimates a inverse covariance matrix based on pseudo-likelihood. We conduct numerical studies for two network structures to demonstrate the efficiency of the proposed algorithm for the CONCORD in terms of computation times.

A NOTE ON OPTIMAL RECONSTRUCTION OF MAGNETIC RESONANCE IMAGES FROM NON-UNIFORM SAMPLES IN k-SPACE

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • A goal of Magnetic Resonance Imaging is reproducing a spatial map of the effective spin density from the measured Fourier coefficients of a specimen. The imaging procedure can be done by inverse Fourier transformation or backward fast Fourier transformation if the data are sampled on a regular grid in frequency space; however, it is still a challenging question how to reconstruct an image from a finite set of Fourier data on irregular points in k-space. In this paper, we describe some mathematical and numerical properties of imaging techniques from non-uniform MR data using the pseudo-inverse or the diagonal-inverse weight matrix. This note is written as an easy guide to readers interested in the non-uniform MRI techniques and it basically follows the ideas given in the paper by Greengard-Lee-Inati [10, 11].

Application of Compressive Sensing to Two-Dimensional Radar Imaging Using a Frequency-Scanned Microstrip Leaky Wave Antenna

  • Yang, Shang-Te;Ling, Hao
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.113-119
    • /
    • 2017
  • The application of compressive sensing (CS) to a radar imaging system based on a frequency-scanned microstrip leaky wave antenna is investigated. First, an analytical model of the system matrix is formulated as the basis for the inversion algorithm. Then, $L_1-norm$ minimization is applied to the inverse problem to generate a range-azimuth image of the scene. Because of the antenna length, the near-field effect is considered in the CS formulation to properly image close-in targets. The resolving capability of the combined frequency-scanned antenna and CS processing is examined and compared to results based on the short-time Fourier transform and the pseudo-inverse. Both simulation and measurement data are tested to show the system performance in terms of image resolution.

A study on the design and control of an articulated hand (다관절 손 기구의 설계 및 제어에 관한 연구)

  • Kim, Cheol-Woo;Gweon, Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.200-205
    • /
    • 1993
  • In many applications, the typical parallel-jaw end-effector of a robot arm has been remarkably satisfactory. But, it is not adequate for the applications such as complicated manipulation. In the study, a finger with 4 joints (so, having redundancy) was consturcted to investigate the characteristics of an articulated hand. Each joint was driven by one actuator, and the motor torque was transmited to each joint through a tendon-pulley system. In the context, major considerations for hardware design and the method to solve the inverse kinematics of a redundant manipulator were presented. Finally, the basic capabilities of an articulated hand were presented through experiments.

  • PDF

A Study on the Pseudoinverse Kinematic Motion Control of 6-Axis Arc Welding Robot (6축 아크 용접 로보트의 의사 역기구학적 동작 제어에 관한 연구)

  • Choi, Jin-Seob;Kim, Dong-Won;Yang, Sung-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1993
  • In robotic arc welding, the roll (rotation) of the torch about its direction vector does not have any effect on the welding operation. Thus we could use this redundant degree of greedom for the motion control of the robot manipulator. This paper presents an algorithm for the pseudo- inverse kinematic motion control of the 6-axis robot, which utilizes the above mentioned redunancy. The prototype welding operation and the tool path are also graphically simulated. Since the proposed algorithm requires only the position and normal vector of the weldine as an input data, it is useful for the CAD-based off-line programming of the arc welding robot. In addition, it also has the advantages of the redundant manipulator motion control, like singularity avoidance and collision free motion planning, when compared with the other motion control method based on the direct inverse kinematics.

  • PDF