• Title/Summary/Keyword: Pseudo position

Search Result 105, Processing Time 0.024 seconds

Analysis and performance evaluation of the parallel typed for a vehicle driving simulator (병렬구조형 차량운전 모사장치의 성능평가 및 분석)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

A Study on Cluster Head Selection and a Cluster Formation Plan to Prolong the Lifetime of a Wireless Sensor Network

  • Ko, Sung-Won;Cho, Jeong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.62-70
    • /
    • 2015
  • The energy of a sensor in a Wireless Sensor Network (WSN) puts a limit on the lifetime of the network. To prolong the lifetime, a clustering plan is used. Clustering technology gets its energy efficiency through reducing the number of communication occurrences between the sensors and the base station (BS). In the distributed clustering protocol, LEACH-like (Low Energy Adaptive Clustering Hierarchy - like), the number of sensor's cluster head (CH) roles is different depending on the sensor's residual energy, which prolongs the time at which half of nodes die (HNA) and network lifetime. The position of the CH in each cluster tends to be at the center of the side close to BS, which forces cluster members to consume more energy to send data to the CH. In this paper, a protocol, pseudo-LEACH, is proposed, in which a cluster with a CH placed at the center of the cluster is formed. The scheme used allows the network to consume less energy. As a result, the timing of the HNA is extended and the stable network period increases at about 10% as shown by the simulation using MATLAB.

Homing Guidance Law and Spiral Descending Path Design for UAV Automatic Landing (무인항공기 자동착륙을 위한 나선형 강하궤적 및 종말유도 설계)

  • Yoon, Seung-Ho;Kim, H.-Jin;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • This paper presents a spiral descending path and a landing guidance law for net-recovery of a fixed-wing unmanned aerial vehicle. The net-recovery landing flight is divided into two phases. In the first phase, a spiral descending path is designed from an arbitrary initial position to a final approaching waypoint toward the recovery net. The flight path angle is controlled to be aligned to the approaching direction at the end of the spiral descent. In the second phase, the aircraft is guided from the approaching waypoint to the recovery net using a pseudo pursuit landing guidance law. Six degree-of-freedom simulation is performed to verify the performance of the proposed landing guidance law.

Novel Multiple Access Schemes for IEEE 802.15.4a Low-rate Ultra-wide Band Systems

  • Zhang, Hong;Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.682-687
    • /
    • 2010
  • The IEEE 802.15.4a specification targets the low-rate (LR) Impulse-radio (IR) ultra-wideband (UWB) system which is now widely applied in the WPANs considering rather short distance communications with low complexity and power consumption. The physical (PHY) layer uses concatenated coding with mixed binary phase-shift keying and binary pulse-position modulation (BPSK-BPPM), and direct sequence spreading with time hopping in order that both coherent and non-coherent receiver architectures are supported. In this paper, the performances of multiple access schemes compliant with IEEE 802.15.4a specification are investigated with energy detection receiver, which allow avoiding the complex channel estimation needed by a coherent receiver. However, the performance of energy detection receiver is severely degraded by multi-user interference (MUI), which largely diminishes one of the most fascinating advantages of UWB, namely robustness to MUI as well as the possibility to allow parallel transmissions. So as to improve the performance of multiple access schemes, we propose to apply the novel TH sequences as well as to increase the number of TH positions. The simulation results show that our novel multiple access schemes significantly improve the performance against MUI.

A Study on Compact Network RTK for Land Vehicles and Real-Time Test Results

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.43-52
    • /
    • 2018
  • In recent years, the need of high accuracy navigation for vehicles has increased due to the development of autonomous driving vehicles and increase in land transportation convenience. This study is performed for vehicle users to achieve a performance of centimeter-level positioning accuracy by utilizing Compact Network Real-time Kinematic (RTK) that is applicable as a national-level infrastructure. To this end, medium-baseline RTK was implemented in real time to estimate accurate integer ambiguities between reference stations for reliable generation of Network RTK correction using the linear combination of carrier-phase observations and L1/L2 pseudo-range measurements. The residual tropospheric error was estimated in real time to improve the accuracy of double-differenced integer ambiguity resolution between network configuration reference stations that have at least 30 km or longer baseline distance. In addition, C++ based software was developed to enable real-time generation and broadcasting of Compact Network RTK correction information by utilizing an accurately estimated double-differenced integer ambiguity values. As a result, the horizontal and vertical 95% accuracy was 2.5cm and 5.2cm, respectively, without performance degradation due to user's position change within the network.

A High-Quality Image Authentication Scheme for AMBTC-compressed Images

  • Lin, Chia-Chen;Huang, Yuehong;Tai, Wei-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4588-4603
    • /
    • 2014
  • In this paper, we present a high-quality image authentication scheme based on absolute moment block truncation coding. In the proposed scheme, we use the parity of the bitmap (BM) to generate the authentication code for each compressed image block. Data hiding is used to authenticate whether the content has been altered or not. For image authentication, we embed the authentication code to quantization levels of each image block compressed by absolute moment block truncation coding (AMBTC) which will be altered when the host image is manipulated. The embedding position is generated by a pseudo-random number generator for security concerned. Besides, to improve the detection ability we use a hierarchical structure to ensure the accuracy of tamper localization. A watermarked image can be precisely inspected whether it has been tampered intentionally or incautiously by checking the extracted watermark. Experimental results demonstrated that the proposed scheme achieved high-quality embedded images and good detection accuracy, with stable performance and high expansibility. Performance comparisons with other block-based data hiding schemes are provided to demonstrate the superiority of the proposed scheme.

Localization Algorithm for a Mobile Robot using iGS (iGS를 이용한 모바일 로봇의 실내위치추정 알고리즘)

  • Seo, Dae-Geun;Cho, Sung-Ho;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.242-247
    • /
    • 2008
  • As an absolute positioning system, iGS is designed based on ultrasonic signals whose speed can be formulated clearly in terms of time and room temperature, which is utilized for a mobile robot localization. The iGS is composed of an RFID receiver and an ultra-sonic transmitter, where an RFID is designated to synchronize the transmitter and receiver of the ultrasonic signal. The traveling time of the ultrasonic signal has been used to calculate the distance between the iGS system and a beacon which is located at a pre-determined location. This paper suggests an effective operation method of iGS to estimate position of the mobile robot working in unstructured environment. To expand recognition range and to improve accuracy of the system, two strategies are proposed: utilization of beacons belonging to neighboring blocks and removal of the environment-reflected ultrasonic signals. As the results, the ubiquitous localization system based on iGS as a pseudo-satellite system has been developed successfully with a low cost, a high update rate, and relatively high precision.

Effect of flow bleed on shock wave/boundary layer interaction (유동의 흡입이 충격파/경계층의 간섭현상에 미치는 영향)

  • Kim, Heuy-Dong;Matsus, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1273-1283
    • /
    • 1997
  • Experiments of shock wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer flow bleed on the interaction flow field in a straight tube. Two-dimensional slits were installed on the tube walls to bleed the turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled within the range of 11 per cent. The wall pressures were measured by the flush mounted transducers and Schlieren optical observations were made for almost all of the experiments. The results show that the boundary layer flow bleed reduces the multiple shock waves to a strong normal shock wave. For the design Mach number of 1.6, it was found that the normal shock wave at the position of the silt was resulted from the main flow choking due to the suction of the boundary layer flow.

GPS Pull-In Search Using Reverse Directional Finite Rate of Innovation (FRI)

  • Kong, Seung-Hyun;Yoo, Kyungwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 2014
  • When an incoming Global Positioning System (GPS) signal is acquired, pull-in search performs a finer search of the Doppler frequency of the incoming signal so that phase lock loop can be quickly stabilized and the receiver can produce an accurate pseudo-range measurement. However, increasing the accuracy of the Doppler frequency estimation often involves a higher computational cost for weaker GPS signals, which delays the position fix. In this paper, we show that the Doppler frequency detectable by a long coherent auto-correlation can be accurately estimated using a complex-weighted sum of consecutive short coherent auto-correlation outputs with a different Doppler frequency hypothesis, and by exploiting this we propose a noise resistant, low-cost and highly accurate Doppler frequency and phase estimation technique based on a reverse directional application of the finite rate of innovation (FRI) technique. We provide a performance and computational complexity analysis to show the feasibility of the proposed technique and compare the performance to conventional techniques using numerous Monte Carlo simulations.

A Study on the Application of U-SAT System for the Indoor Positioning Technology of Ubiquitous Computing (유비쿼터스 컴퓨팅의 실내 측위 기술을 위한 U-SAT 시스템의 적용에 관한 연구)

  • Lee, Dong-Hwal;Park, Jong-Jin;Kim, Su-Yong;Mun, Young-Song;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.876-882
    • /
    • 2006
  • This study presents an ultrasonic location awareness system for the ubiquitous computing with absolute position. The flight time of ultrasonic waves is determined by a period detecting technique which is able to extend the sensing range compared with traditional methods. For location awareness, ultrasonic waves are sent successively from each ultrasonic transmitter and synchronized by radio frequency (RF) signal, where the transmitting part is fixed and the receiving part is movable. To expand the recognizing range, cell matching technique and coded ultrasonic technique are introduced. The experimentation for various distances is accomplished to verify the used period detecting technique of U-SAT system. The positioning accuracy by using cell matching is also verified by finding the locations of settled points and the usability of coded ultrasonic technique is verified. As a result, the possibility of ultrasonic location awareness system for the ubiquitous computing can be discussed as a pseudo-satellite system with low cost, a high update rate, and relatively high precision, in the places where CPS is not available.