• Title/Summary/Keyword: Pseudo failure time

Search Result 21, Processing Time 0.023 seconds

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

Viscoelastic constitutive modeling of asphalt concrete with growing damage

  • Lee, Hyun-Jong;Kim, Y. Richard;Kim, Sun-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.225-240
    • /
    • 1999
  • This paper presents a mechanistic approach to uniaxial viscoelastic constitutive modeling of asphalt concrete that accounts for damage evolution under cyclic loading conditions. An elasticviscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. The time-dependent damage growth in asphalt concrete is modeled by using a damage parameter based on a generalization of microcrack growth law. Internal state variables that describe the hysteretic behavior of asphalt concrete are determined. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode and then transformed to a controlled-stress constitutive equation by simply replacing physical stress and pseudo strain with pseudo stress and physical strain. Tensile uniaxial fatigue tests are performed under the controlled-strain mode to determine model parameters. The constitutive equations in terms of pseudo strain and pseudo stress satisfactorily predict the constitutive behavior of asphalt concrete all the way up to failure under controlled-strain and -stress modes, respectively.

Analysis of Degradation Data Using Robust Experimental Design (강건 실험계획법을 이용한 열화자료의 분석)

  • 서순근;하천수
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.1
    • /
    • pp.113-129
    • /
    • 2004
  • The reliability of the product can be improved by making the product less sensitive to noises. Especially, it Is important to make products robust against various noise factors encountered in production and field environments. In this paper, the phenomenon of degradation assumes a simple random coefficient degradation model to present analysis procedures of degradation data for robust experimental design. To alleviate weak points of previous studies, such as Taguchi's, Wasserman's, and pseudo failure time methods, novel techniques for analysis of degradation data using the cross array that regards amount of degradation as a dynamic characteristic for time are proposed. Analysis approach for degradation data using robust experimental design are classified by assumptions on parametric or nonparametric degradation rate(or slope). Also, a simulation study demonstrates the superiority of proposed methods over some previous works.

Field data analyses for products with multiple-modes of failure (고장원인이 여럿인 제품의 사용현장 데이터 분석)

  • 배도선;최인수;황용근
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.1
    • /
    • pp.89-104
    • /
    • 1995
  • This paper is concerned with the method of estimating lifetime distributin from field data for products with multiple modes of failure. When product failures occur within warranty period, a manufacturer can obtain failure-record data; failure times, causes of failure, and covariates. Since these data are seriously incomplete for satisfactory inference, that is, only failures occured during warrantly period may be recorded, it is usually necessary to incoporate the failure-record data by taking a supplementary sample of items obtained following up a portion of products that survive warranty time. The log linear function is considered as a model for describing the relation between failure time of a product and covariates. General methods for obtaining pseudo maximum likelihood estimators(PMLEs) for the parameters are outlined and their asymptotic properties are studied, and specific formulas for exponential or Weibull distribution are obtained. Effects of follow-up percentage on the PMLEs are investigated. Extensions to calendar time warranty or calendar and obtaining time warranty are also considered.

  • PDF

Development of Reliability Analysis Procedures for Repairable Systems with Interval Failure Time Data and a Related Case Study (구간 고장 데이터가 주어진 수리가능 시스템의 신뢰도 분석절차 개발 및 사례연구)

  • Cho, Cha-Hyun;Yum, Bong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.859-870
    • /
    • 2011
  • The purpose of this paper is to develop reliability analysis procedures for repairable systems with interval failure time data and apply the procedures for assessing the storage reliability of a subsystem of a certain type of guided missile. In the procedures, the interval failure time data are converted to pseudo failure times using the uniform random generation method, mid-point method or equispaced intervals method. Then, such analytic trend tests as Laplace, Lewis-Robinson, Pair-wise Comparison Nonparametric tests are used to determine whether the failure process follows a renewal or non-renewal process. Monte Carlo simulation experiments are conducted to compare the three conversion methods in terms of the statistical performance for each trend test when the underlying process is homogeneous Poisson, renewal, or non-homogeneous Poisson. The simulation results show that the uniform random generation method is best among the three. These results are applied to actual field data collected for a subsystem of a certain type of guided missile to identify its failure process and to estimate its mean time to failure and annual mean repair cost.

Constitutive Modeling of Asphalt Concrete with Time-Dependent Damage Growth (손상이 증가하는 아스팔트 콘크리트의 점탄성 구성모델)

  • 이현종
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.229-238
    • /
    • 1997
  • Mechanical behavior of asphalt concrete that accounts for viscoelasticity and damage evolution under cyclic loading conditions is modeled and presented in this paper. An elastic-viscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. A microcrack growth law, which is commonly employed in linear viscoelastic fracture mechanics, is successfully used for describing the damage growth in the body. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode, and then transformed to controlled-stress constitutive equation by simply replacing stress and pseudo strain with pseudo stress and strain. The transformed constitutive equation in terms of pseudo stress satisfactorily predicts the mechanical behavior of asphalt concrete all the way up to failure under controlled-stress modes.

  • PDF

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

A Study on Reliability Prediction of System with Degrading Performance Parameter (열화되는 성능 파라메터를 가지는 시스템의 신뢰성 예측에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • Due to advancements in technology and manufacturing capability, it is not uncommon that life tests yield no or few failures at low stress levels. In these situations it is difficult to analyse lifetime data and make meaningful inferences about product or system reliability. For some products or systems whose performance characteristics degrade over time, a failure is said to have occurred when a performance characteristic crosses a critical threshold. The measurements of the degradation characteristic contain much useful and credible information about product or system reliability. Degradation measurements of the performance characteristics of an unfailed unit at different times can directly relate reliability measures to physical characteristics. Reliability prediction based on physical performance measures can be an efficient and alternative method to estimate for some highly reliable parts or systems. If the degradation process and the distance between the last measurement and a specified threshold can be established, the remaining useful life is predicted in advance. In turn, this prediction leads to just in time maintenance decision to protect systems. In this paper, we describe techniques for mapping product or system which has degrading performance parameter to the associated classical reliability measures in the performance domain. This paper described a general modeling and analysis procedure for reliability prediction based on one dominant degradation performance characteristic considering pseudo degradation performance life trend model. This pseudo degradation trend model is based on probability modeling of a failure mechanism degradation trend and comparison of a projected distribution to pre-defined critical soft failure point in time or cycle.

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.

On a Multiple Data Handling Method under Online Parameter Estimation

  • Takeyasu, Kazuhiro;Amemiya, Takashi;Iino, Katsuhiro;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 2002
  • In the field of plant maintenance, data that are gathered by sensors on multiple machines are handled and analyzed. Online or pseudo online data handling is required on such fields. When the data occurrence speed exceeds the data handling speed, multiple data should be handled at a time (batch data handling or pseudo online data handling). If l amount of data are received at one time following N amount of data, how to estimate the new parameters effectively is a great concern. A new simplified calculation method, which calculates the N data's weights, is introduced. Numerical examples show that this new method has a fairly god estimation accuracy and the calculation time is less than 1/10 compared with the case when the whole data are re-calculated. Even under the restriction calculation ability in the apparatus is limited, this proposed method makes the failure detection of equipments possible in early stages with a few new coming data. This method would be applicable in many data handling fields.