• Title/Summary/Keyword: Pseudo Spectrum

Search Result 134, Processing Time 0.019 seconds

An Analysis of Optimal Sequences for the Detection of Wake-up Signal in Disaster-preventing Broadcast (재난방송용 대기모드 해제신호 검출을 위한 최적 부호 성능 분석)

  • Park, Hae Yong;Jo, Bonggyun;Kim, Heung Mook;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2014
  • Recently, the need for disaster-preventing broadcast has increased gradually to cope with natural disaster like earthquake and tsunami causing enormous losses of both life and property. In disaster-preventing broadcast system, the wake-up signal is used to alert user terminal and switch the current state of channel to the emergency channel, which is for the fast and efficient delivery of emergency information. In this paper, we propose the detection method of wake-up signal for disaster-preventing broadcast systems. The wake-up signals for disaster-preventing broadcast should have a good auto-correlation property in low power and narrow-band conditions that does not affect the existing digital television (DTV) system. The suitability of the m-sequence and complementary code (CC) is analyzed for wake-up signals according to signal to noise ratio. A wake-up signal is proposed by combining the direct sequence spread spectrum (DSSS) technique and pseudo noise (PN) sequences such as Barker and Walsh-Hadamard codes. By using the proposed method, a higher detecting performance can be achieved by the spreading gain compared to the single long m-sequence and the Golay code.

1H NMR Kinetic Studies for Degradation of Nitramine Explosives Using PdO Nanoparticle (PdO 나노입자를 이용한 니트라민 폭발물 분해반응에 대한 1H NMR 반응속도연구)

  • Kye, Young-Sik;Kumbier, Mathew;Kim, Dongwook;Harbison, Gerard S.;Langell, Marjorie A.
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.302-308
    • /
    • 2022
  • The PdO nanoparticle with large surface area was selected to solve the environmental pollution problem at fire range caused by high energy explosives research department explosive (RDX) and high melting explosive (HMX). By simulating water pollution, RDX and HMX nitramine explosives were dissolved in water, followed by the degradation reaction at 313 K by adding PdO. In order to measure the degradation reaction rate of explosives, 1H NMR was used, which can monitor the reaction rate without losing sample during reaction, and observe the progress of the reaction through the spectrum. The results showed that the degradation of RDX and HMX by PdO nanoparticles are pseudo-first order reaction. The degradation of explosives compounds were observed via the chemical shift and peak intensity analysis of NMR peaks. The measured rate constants for these reactions of RDX and HMX were 2.10 × 10-2 and 6.35 × 10-4 h-1, respectively. This study showed that the application of PdO nanoparticles for explosives degradation is a feasible option.

Oxide perovskite crystals type ABCO4:application and growth

  • Pajaczkowska, A.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.258-292
    • /
    • 1996
  • In the last year great interest appears to YBCO thin films preparation on different substrate materials. Preparation of epitaxial film is a very difficult problem. There are many requirements to substrate materials that must be fullfilled. Main problems are lattice mismatch (misfit) and similarity of structure. From paper [1] or follows that difference in interatomic distances and angles of substrate and film is mire important problem than similarity of structure. In this work we present interatomic distances and angle relations between substrate materials belonging to ABCO4 group (where A-Sr or Ca, B-rare earth element, C-Al or Ga) of different orientations and YBCO thin films. There are many materials used as substrates for HTsC thin films. ABCO4 group of compounds is characterized by small dielectric constants (it is necessary for microwave applications of HTsC films), absence of twins and small misfit [2]. There most interesting compounds CaNdAlO4, SrLaAlO4 and SrLaGaO4 were investigated. All these compounds are of pseudo-perovskite structure with space group 14/mmm. This structure is very similar to structure of YBCO. SLG substrate has the lowest misfit (0.3%) and dielectric constant. For preparation of then films of substrates of this group of compound plane of <100> orientation are mainly used. Good quality films of <001> orientations are obtained [3]. In this case not only a-a misfit play role, but c-3b misfit is very important too. Sometimes, for preparation of thin films substrates of <001> and <110> orientations were manufactured [3]. Different misfits for different YBCO faces have been analyzed. It has been found that the mismatching factor for (100) face is very similar to that for (001) face so there is possibility of preparation of thin films on both orientations. SrLaAlO4(SLA) and SrLaGaO4(SLG) crystals of general formula ABCO4 have been grown by the Czochralski method. The quality of SLA and SLG crystals strongly depends on axial gradient of temperature and growth and rotation rates. High quality crystals were obtained at axial gradient of temperature near crystal-melt interface lower than 50℃/cm, growth rate 1-3 mm/h and the rotation rate changing from 10-20pm[4]. Strong anisotropy in morphology of SLA and SLG single crystals grown by the Czochralski method is clearly visible. On the basics of our considerations for ABCO4 type of the tetragonal crystals there can appear {001}, {101}, and {110} faces for ionic type model [5]. Morphology of these crystals depend on ionic-covalent character of bonding and crystal growth parameters. Point defects are observed in crystals and they are reflected in color changes (colorless, yellow, green). Point defects are detected in directions perpendicular to oxide planes and are connected with instability of oxygen position in lattice. To investigate facets formations crystals were doped with Cr3+, Er3+, Pr3+, Ba2+. Chromium greater size ion which is substituted for Al3+ clearly induces faceting. There appear easy {110} faces and SLA crystals crack even then the amount of Cr is below 0.3at.% SLG single crystals are not so sensitive to the content of chromium ions. It was also found that if {110} face appears at the beginning of growth process the crystal changes its color on the plane {110} but it happens only on the shoulder part. The projection of {110} face has a great amount of oxygen positions which can be easy defected. Pure and doped SLA and SLG crystals measured by EPR in the<110> direction show more intensive lines than in other directions which allows to suggest that the amount of oxygen defects on the {110} plane is higher. In order to find the origin of colors and their relation with the crystal stability, a set of SLA and SLG crystals were investigated using optical spectroscopy. The colored samples exhibit an absorption band stretching from the UV absorption edge of the crystal, from about 240 nm to about 550 m. In the case of colorless sample, the absorption spectrum consists of a relatively weak band in the UV region. The spectral position and intensities of absorption bands of SLA are typical for imperfection similar to color centers which may be created in most of oxide crystals by UV and X-radiation. It is pointed out that crystal growth process of polycomponent oxide crystals by Czochralski method depends on the preparation of melt and its stoichiometry, orientation of seed, gradient of temperature at crystal-melt interface, parameters of growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth. Growth parameters have an influence on the morphology of crystal-melt interface, type and concentration of defects.

  • PDF

Mechanism and Activation Parameters $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$ and ${\Delta}V^{\neq})$ of Electron Transfer Reaction Between $Co^{II}CyDTA\;and\;Fe^{III}$CN Complex Ions (Co(II)-CyDTA와 Fe(III)-CN 착이온간의 전자이동반응에서 활성화파라미터 $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$${\Delta}V^{\neq})$ 와 반응메카니즘)

  • Yu Chul Park;Seong Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.273-280
    • /
    • 1989
  • The spectra of the $Co^{II}CyDTA$(CyDTA: cyclohexyldiaminetetraacetic acid) complex have been measured in aqueous solution of pH = 6-13.2. The red shift of the spectrum in the more basic solution was ascribed to the transformation of $CoCyDTA^{2-}$ into $CoCyDTA(OH)^{3-}$. The equilibrium constant, $K_{OH} = [CoCyDTA(OH)^{3-}]/[CoCyDTA^{2-}][OH^-]$ was $75M^{-1}$ at $40^{\circ}C$. The electron transfer reactions of $CoCyDTA^{2-}$ and $CoCyDTA(OH)^{3-}$ with $Fe(CN)_6^{3-}$ have been studied using spectrophotometric technique in the range of pH applied to the determination of equilibrium constant. The pseudo first-order rate constants observed ($k_{obs}$) were not changed upto pH = 10.8, but increased with increasing pH in the range of pH = $10.8{\sim}13.0$. The rate law reduced in the range of pH = 6-13 was $k_{obs} = (k_3[CoCyDTA^{2-}] + k_4[CoCyDTA(OH)^{3-}])/(1+K_1[CoCyDTA^{2-}])$. The rate constants of the reactions (3a) and (3b), $k_3$ and $k_4$ respectively have been determined to be 0.529 and $4.500M^{-1}sec^{-1}$ at $40^{\circ}C$. The activation entropies (147{\pm}1.1JK^{-1} mol^{-1}$ at pH = 10.8) and activation volumes $(6.25cm^3mol^{-1}, pH = 10.8)$ increased with increasing pH, while the activation enthalpy (12.44 ${\pm}$ 0.20 kcal/mole) was independent of pH. Using the pH effect on the rate constants, the activation entropies and the activation volumes, the mechanism of the electron transfer reaction for $Co^{II}-Fe^{III}$ system was discussed.

  • PDF