• Title/Summary/Keyword: Proxy Privilege Server

Search Result 5, Processing Time 0.026 seconds

Design of a effective Authorization Mechanism based on Kerberos (커버로스 기반의 효율적인 허가 메커니즘 설계)

  • Kim, Eun-Hwan;Jun, Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.287-294
    • /
    • 2003
  • Authentication and authorization are essential functions for the security of distributed network environment. Authorization is determining and to decide whether a user or process is permitted to perform a particular operation. In this paper, we design an authorization mechanism to make a system more effective with Kerberos for authentication mechanism. In the authorization mechanism, Kerberos server operates proxy privilege server. Proxy privilege server manages and permits right of users, servers and services with using proposed algorithm. Also, privilege attribute certificate issued by proxy privilege server is used in delegation. We designed secure kerberos with proposed functions for effective authorization at the same time authentication of Kerberos mechanism.

Study on a Secure Authentication and Authorization Protocol based on Kerberos (커버로스 기반의 안전한 인증 및 허가 프로토콜 에 관한 연구)

  • 김은환;김명희;전문석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.737-749
    • /
    • 2004
  • Kerberos authenticates clients using symmetric-key cryptography, and supposed to Oust other systems of the realm in distributed network environment. But, authentication and authorization are essential elements for the security. In this paper, we design an efficient and secure authentication/authorization mechanism by introducing the public/private-key and installing the proxy privilege server to Kerberos. In the proposed mechanism, to make a system more secure, the value of the session key is changed everytime using MAC(message authentication code) algorithm with the long-term key for user-authentication and a random number exchanged through the public key. Also, we reduce the number of keys by simplifying authentication steps. Proxy privilege server certifies privilege request of client and issues a privilege attribute certificate. Application server executes privilege request of client which is included a privilege attribute certificate. Also, a privilege attribute certificate is used in delegation. We design an efficient and secure authentication/authorization algorithm with Kerberos.

Secure Data Management based on Proxy Re-Encryption in Mobile Cloud Environment (모바일 클라우드 환경에서 안전한 프록시 재암호화 기반의 데이터 관리 방식)

  • Song, You-Jin;Do, Jeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.288-299
    • /
    • 2012
  • To ensure data confidentiality and fine-grained access control in business environment, system model using KP-ABE(Key Policy-Attribute Based Encryption) and PRE(Proxy Re-Encryption) has been proposed recently. However, in previous study, data confidentiality has been effected by decryption right concentrated on cloud server. Also, Yu's work does not consider a access privilege management, so existing work become dangerous to collusion attack between malicious user and cloud server. To resolve this problem, we propose secure system model against collusion attack through dividing data file into header which is sent to privilege manager group and body which is sent to cloud server and prevent modification attack for proxy re-encryption key using d Secret Sharing, We construct protocol model in medical environment.

Distributed Access Privilege Management for Secure Cloud Business (안전한 클라우드 비즈니스를 위한 접근권한 분산관리)

  • Song, You-Jin;Do, Jeong-Min
    • The KIPS Transactions:PartC
    • /
    • v.18C no.6
    • /
    • pp.369-378
    • /
    • 2011
  • To ensure data confidentiality and fine-grained access control in business environment, system model using KP-ABE(Key Policy-Attribute Based Encryption) and PRE(Proxy Re-Encryption) has been proposed recently. However, in previous study, data confidentiality has been effected by decryption right concentrated on cloud server. Also, Yu's work does not consider a access privilege management, so existing work become dangerous to collusion attack between malicious user and cloud server. To resolve this problem, we propose secure system model against collusion attack through dividing data file into header which is sent to privilege manager group and body which is sent to cloud server. And we construct the model of access privilege management using AONT based XOR threshold Secret Sharing, In addition, our scheme enable to grant weight for access privilege using XOR Share. In chapter 4, we differentiate existing scheme and proposed scheme.

De-Centralized Information Flow Control for Cloud Virtual Machines with Blowfish Encryption Algorithm

  • Gurav, Yogesh B.;Patil, Bankat M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.235-247
    • /
    • 2021
  • Today, the cloud computing has become a major demand of many organizations. The major reason behind this expansion is due to its cloud's sharing infrastructure with higher computing efficiency, lower cost and higher fle3xibility. But, still the security is being a hurdle that blocks the success of the cloud computing platform. Therefore, a novel Multi-tenant Decentralized Information Flow Control (MT-DIFC) model is introduced in this research work. The proposed system will encapsulate four types of entities: (1) The central authority (CA), (2) The encryption proxy (EP), (3) Cloud server CS and (4) Multi-tenant Cloud virtual machines. Our contribution resides within the encryption proxy (EP). Initially, the trust level of all the users within each of the cloud is computed using the proposed two-stage trust computational model, wherein the user is categorized bas primary and secondary users. The primary and secondary users vary based on the application and data owner's preference. Based on the computed trust level, the access privilege is provided to the cloud users. In EP, the cipher text information flow security strategy is implemented using the blowfish encryption model. For the data encryption as well as decryption, the key generation is the crucial as well as the challenging part. In this research work, a new optimal key generation is carried out within the blowfish encryption Algorithm. In the blowfish encryption Algorithm, both the data encryption as well as decryption is accomplishment using the newly proposed optimal key. The proposed optimal key has been selected using a new Self Improved Cat and Mouse Based Optimizer (SI-CMBO), which has been an advanced version of the standard Cat and Mouse Based Optimizer. The proposed model is validated in terms of encryption time, decryption time, KPA attacks as well.