• Title/Summary/Keyword: Proximal policy optimization(PPO)

Search Result 24, Processing Time 0.025 seconds

Multi-Agent Deep Reinforcement Learning for Fighting Game: A Comparative Study of PPO and A2C

  • Yoshua Kaleb Purwanto;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.192-198
    • /
    • 2024
  • This paper investigates the application of multi-agent deep reinforcement learning in the fighting game Samurai Shodown using Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A2C) algorithms. Initially, agents are trained separately for 200,000 timesteps using Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) with LSTM networks. PPO demonstrates superior performance early on with stable policy updates, while A2C shows better adaptation and higher rewards over extended training periods, culminating in A2C outperforming PPO after 1,000,000 timesteps. These findings highlight PPO's effectiveness for short-term training and A2C's advantages in long-term learning scenarios, emphasizing the importance of algorithm selection based on training duration and task complexity. The code can be found in this link https://github.com/Lexer04/Samurai-Shodown-with-Reinforcement-Learning-PPO.

A Study about the Usefulness of Reinforcement Learning in Business Simulation Games using PPO Algorithm (경영 시뮬레이션 게임에서 PPO 알고리즘을 적용한 강화학습의 유용성에 관한 연구)

  • Liang, Yi-Hong;Kang, Sin-Jin;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.61-70
    • /
    • 2019
  • In this paper, we apply reinforcement learning in the field of management simulation game to check whether game agents achieve autonomously given goal. In this system, we apply PPO (Proximal Policy Optimization) algorithm in the Unity Machine Learning (ML) Agent environment and the game agent is designed to automatically find a way to play. Five game scenario simulation experiments were conducted to verify their usefulness. As a result, it was confirmed that the game agent achieves the goal through learning despite the change of environment variables in the game.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.

A Study on Load Distribution of Gaming Server Using Proximal Policy Optimization (Proximal Policy Optimization을 이용한 게임서버의 부하분산에 관한 연구)

  • Park, Jung-min;Kim, Hye-young;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.19 no.3
    • /
    • pp.5-14
    • /
    • 2019
  • The gaming server is based on a distributed server. In order to distribute workloads of gaming servers, distributed gaming servers apply some algorithms which divide each of gaming server's workload into balanced workload among the gaming servers and as a result, efficiently manage response time and fusibility of server requested by the clients. In this paper, we propose a load balancing agent using PPO(Proximal Policy Optimization) which is one of the methods from a greedy algorithm and Policy Gradient which is from Reinforcement Learning. The proposed load balancing agent is compared with the previous researches based on the simulation.

Flight Trajectory Simulation via Reinforcement Learning in Virtual Environment (가상 환경에서의 강화학습을 이용한 비행궤적 시뮬레이션)

  • Lee, Jae-Hoon;Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • The most common way to control a target point using artificial intelligence is through reinforcement learning. However, it had to process complicated calculations that were difficult to implement in order to process reinforcement learning. In this paper, the enhanced Proximal Policy Optimization (PPO) algorithm was used to simulate finding the planned flight trajectory to reach the target point in the virtual environment. In this paper, we simulated how this problem was used to find the planned flight trajectory to reach the target point in the virtual environment using the enhanced Proximal Policy Optimization(PPO) algorithm. In addition, variables such as changes in trajectory, effects of rewards, and external winds are added to determine the zero conditions of external environmental factors on flight trajectory learning, and the effects on trajectory learning performance and learning speed are compared. From this result, the simulation results have shown that the agent can find the optimal trajectory in spite of changes in the various external environments, which will be applicable to the actual vehicle.

A Study on Asset Allocation Using Proximal Policy Optimization (근위 정책 최적화를 활용한 자산 배분에 관한 연구)

  • Lee, Woo Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.645-653
    • /
    • 2022
  • Recently, deep reinforcement learning has been applied to a variety of industries, such as games, robotics, autonomous vehicles, and data cooling systems. An algorithm called reinforcement learning allows for automated asset allocation without the requirement for ongoing monitoring. It is free to choose its own policies. The purpose of this paper is to carry out an empirical analysis of the performance of asset allocation strategies. Among the strategies considered were the conventional Mean- Variance Optimization (MVO) and the Proximal Policy Optimization (PPO). According to the findings, the PPO outperformed both its benchmark index and the MVO. This paper demonstrates how dynamic asset allocation can benefit from the development of a reinforcement learning algorithm.

Evaluation of Human Demonstration Augmented Deep Reinforcement Learning Policies via Object Manipulation with an Anthropomorphic Robot Hand (휴먼형 로봇 손의 사물 조작 수행을 이용한 사람 데모 결합 강화학습 정책 성능 평가)

  • Park, Na Hyeon;Oh, Ji Heon;Ryu, Ga Hyun;Lopez, Patricio Rivera;Anazco, Edwin Valarezo;Kim, Tae Seong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • Manipulation of complex objects with an anthropomorphic robot hand like a human hand is a challenge in the human-centric environment. In order to train the anthropomorphic robot hand which has a high degree of freedom (DoF), human demonstration augmented deep reinforcement learning policy optimization methods have been proposed. In this work, we first demonstrate augmentation of human demonstration in deep reinforcement learning (DRL) is effective for object manipulation by comparing the performance of the augmentation-free Natural Policy Gradient (NPG) and Demonstration Augmented NPG (DA-NPG). Then three DRL policy optimization methods, namely NPG, Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO), have been evaluated with DA (i.e., DA-NPG, DA-TRPO, and DA-PPO) and without DA by manipulating six objects such as apple, banana, bottle, light bulb, camera, and hammer. The results show that DA-NPG achieved the average success rate of 99.33% whereas NPG only achieved 60%. In addition, DA-NPG succeeded grasping all six objects while DA-TRPO and DA-PPO failed to grasp some objects and showed unstable performances.

Experimental Analysis of A3C and PPO in the OpenAI Gym Environment (OpenAI Gym 환경에서 A3C와 PPO의 실험적 분석)

  • Hwang, Gyu-Young;Lim, Hyun-Kyo;Heo, Joo-Seong;Han, Youn-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.545-547
    • /
    • 2019
  • Policy Gradient 방식의 학습은 최근 강화학습 분야에서 많이 연구되고 있는 주제로, 본 논문에서는 강화학습을 적용시킬 수 있는 OpenAi Gym 의 'CartPole-v0' 와 'Pendulum-v0' 환경에서 Policy Gradient 방식의 Asynchronous Advantage Actor-Critic (A3C) 알고리즘과 Proximal Policy Optimization (PPO) 알고리즘의 학습 성능을 비교 분석한 결과를 제시한다. 딥러닝 모델 등 두 알고리즘이 동일하게 지닐 수 있는 조건들은 가능한 동일하게 맞추면서 Episode 진행에 따른 Score 변화 과정을 실험하였다. 본 실험을 통해서 두 가지 서로 다른 환경에서 PPO 가 A3C 보다 더 나은 성능을 보임을 확인하였다.

Design of track path-finding simulation using Unity ML Agents

  • In-Chul Han;Jin-Woong Kim;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.61-66
    • /
    • 2024
  • This paper aims to design a simulation for path-finding of objects in a simulation or game environment using reinforcement learning techniques. The main feature of this study is that the objects in the simulation are trained to avoid obstacles at random locations generated on a given track and to automatically explore path to get items. To implement the simulation, ML Agents provided by Unity Game Engine were used, and a learning policy based on PPO (Proximal Policy Optimization) was established to form a reinforcement learning environment. Through the reinforcement learning-based simulation designed in this study, we were able to confirm that the object moves on the track by avoiding obstacles and exploring path to acquire items as it learns, by analyzing the simulation results and learning result graph.

Design and Implementation of Reinforcement Learning Agent Using PPO Algorithim for Match 3 Gameplay (매치 3 게임 플레이를 위한 PPO 알고리즘을 이용한 강화학습 에이전트의 설계 및 구현)

  • Park, Dae-Geun;Lee, Wan-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • Most of the match-3 puzzle games supports automatic play using the MCTS algorithm. However, implementing reinforcement learning agents is not an easy job because it requires both the knowledge of machine learning and the way of complex interactions within the development environment. This study proposes a method in which we can easily design reinforcement learning agents and implement game play agents by applying PPO(Proximal Policy Optimization) algorithms. And we could identify the performance was increased about 44% than the conventional method. The tools we used are the Unity 3D game engine and Unity ML SDK. The experimental result shows that agents became to learn game rules and make better strategic decisions as experiments go on. On average, the puzzle gameplay agents implemented in this study played puzzle games better than normal people. It is expected that the designed agent could be used to speed up the game level design process.