• 제목/요약/키워드: Proton Exchange Membrane Fuel Cell

검색결과 430건 처리시간 0.034초

수소극 Dead-End 모드 고분자 전해질 연료전지의 실험적 연구 (Experimental Study of Performance of PEMFC Operated in Dead-End Mode)

  • 지상훈;황용신;최종원;이대영;박준호;장재혁;김민수;차석원
    • 대한기계학회논문집B
    • /
    • 제34권6호
    • /
    • pp.643-648
    • /
    • 2010
  • 출구부가 폐쇄된 데드앤드 모드 운전은 연료이용률이 높고, 부가장치 소모동력이 작기 때문에 소형연료전지 분야에 널리 적용되고 있다. 하지만 수증기나 질소 등과 같은 불순물의 축적으로 인해 성능이 저하되는 단점을 가지고 있다. 본 논문에서는 이러한 성능 저하의 요인 중 수분 축적의 영향을 알아보기 위해 부하 방식에 따른 거동, 퍼징 전후 분극 성능, 수분 축적 분포, 공기극 상대습도에 따른 성능을 알아보았다. 본 실험에 적용된 운전 조건에서의 성능 거동은 정전압 부하(0.4V)보다 정전류밀도 ($600mA/cm^2$)부하에서 보다 안정적으로 나타났다. 가시화 창을 통해 수소극에 축적된 대부분의 수분은 출구부에 가까운 부분에 분포함을 알 수 있었다. 또한 공기극 상대습도(0.15, 0.4, 0.75 RH)가 높아질수록 성능 유지 시간은 감소한 반면 성능 감소율은 증가하였다. 특히, 상대습도 0.15에서의 성능 기준으로 평균출력밀도는 51% 증가하였고, 평균성능유지시간은 25% 감소하였다.

가스확산층의 압축에 따른 공극률 및 기체투과율의 변화 (Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression)

  • 이용택
    • 대한기계학회논문집B
    • /
    • 제37권8호
    • /
    • pp.767-773
    • /
    • 2013
  • 본 연구는 높은 압력으로 체결되어 있는 고분자전해질연료전지(PEMFC) 스택의 구성부품중 가장 크게 변형되는 가스확산층(GDL)의 공극률과 기체투과율의 변화를 제시하였다. 압축하중에 따른 체적변화를 실험을 통하여 측정하고 기존에 제시된 관계식을 이용하여 공극률과 기체투과율의 변화을 예측하였다. 또한 물의 배출을 향상시키기 위하여 첨가되는 PTFE 가 압축상태의 GDL 의 공극률과 기체투과율에 미치는 영향을 연구하였다. 물질전달에 직접 영향을 미치는 기체투과율은 PTFE 가 많이 포함된 GDL에서 급격하게 감소하였다. 결과적으로 같은 압축하중으로 체결하는 경우 GDL 의 PTFE 함량에 따라서 공극네트워크를 통한 물질전달은 크게 달라질 수 있다. 본 결과를 이용하면 GDL 에서의 전달현상에 대한 개선된 상관식을 개발할 수 있고 그로 인하여 모델링의 정확성을 향상시킬 수 있다.

삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측 (Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images)

  • 유한길;윤군진
    • Composites Research
    • /
    • 제37권1호
    • /
    • pp.40-45
    • /
    • 2024
  • 본 연구에서는 고분자 전해질막 연료전지용 가스확산층의 투과도를 예측하기 위해 삼차원 합성곱 신경망 모델을 사용하는 방법론을 소개한다. 먼저, 기계학습 모델을 학습시키기 위해 X-선 단층 촬영을 통해 얻은 실제 가스확산층 이미지에서 형태학적 특성을 추출해 가스확산층의 대표 체적 요소로 이루어진 인공 데이터셋을 생성한다. 이러한 형태학적 특성은 다공성, 섬유 배향, 직경의 통계적 분포가 포함된다. 구축한 인공 데이터셋 대표 체적 요소들의 투과도를 평가하기 위해 격자 볼츠만 방법이 사용되었으며 각각의 대표 체적 요소들의 투과도를 도출하였다. 이러한 인공 데이터셋을 통해 삼차원 합성곱 신경망 모델을 학습시켰으며 인공 데이터셋을 학습한 삼차원 합성곱 신경망 모델이 실제 가스확산층의 대표 체적 요소 투과도 또한 잘 예측하는 것을 확인하였다.

고분자 전해질 연료전지의 활성화과정에서 전압 범위 및 활성화 횟수의 영향 (Effect of Voltage Range and Number of Activation Cycles in the Activation Process of a Polymer Electrolyte Fuel Cell)

  • 유동근;오소형;정성기;정지홍;박권필
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.58-61
    • /
    • 2023
  • PEMFC(Proton Exchange Membrane Fuel Cells)는 초기 성능향상을 위해 활성화(Activation) 과정이 필수적이다. 제일 많이 사용되는 활성화 방법은 전압변화(부하변화) 방법으로 과잉으로 진행될 경우 전극 촉매 열화를 동반할 수 있다. 많은 활성화 과정에서 전압변화 범위를 0.4 V에서 OCV 까지 넓은 범위에서 활성화를 진행시키는데 전극 촉매 열화 방지와 활성화 시간을 단축시키기 위해 전압변화 범위를 감소시키는 연구가 필요하다. 그래서 본 연구에서는 활성화 전압범위를 0.4~0.6 V, 0.4~0.8 V, 0.4~OCV로 했을 때 성능과 전극, 고분자막의 특성 변화를 분석해 효과적인 활성화 방법을 연구개발하고자 하였다. 0.4 V에서 제일 높은 OCV 까지 전압 범위를 넓힌 활성화에서 성능 향상도 제일 낮고 56 사이클 활성화 했을 때 활성화 전보다 오히려 성능이 10% 감소했다. 0.4~0.6 V 활성화 사이클에 의해 성능이 최고 20%까지 제일 높게 향상되고 과잉 활성화에 의한 성능 감소도 제일 작아서 최적 임을 보였다.

담수 사용 NaBH4 가수 분해반응에 의한 수소발생 (Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Fresh Water)

  • 오소형;유동근;김태호;김익균;박권필
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.503-507
    • /
    • 2021
  • 이동용 고분자전해질 연료전지(PEMFC)의 수소발생용으로써 NaBH4는 많은 장점을 갖고 있다. 야외에서 PEMFC가 이송형으로 사용될 때 증류수대신 담수를 이용해 NaBH4 가수분해하면 경제적이다. 그래서 본 연구에서는 NaBH4 가수분해 과정에 증류수대신 담수를 이용해 수소를 발생시켰다. 활성탄 담지 Co-P-B/C 촉매를 사용해 NaBH4 가수분해 특성에 대해 연구하였다. 담수는 NaBH4 가수분해과정에서 4수화물을 발생시키지 않았고, 증류수는 4수화물 부산물이 생성되어 가수분해과정에서 많은 물이 소모되어서 NaBH4 25% 이상 고농도에서 반응 종료시점에는 건조한 부산물과 미반응 NaBH4가 남았음을 확인하였다. 이 결과 담수를 사용했을 때 NaBH4 25% 이상 고농도에서 증류수보다 수소 수율과 수소발생속도가 더 높아 무인항공기등 이송형 연료전지에도 적용하기에 적합함을 보였다.

초박형 카본쉘이 코팅된 금속간 화합물 합금 나노 입자로 구성된 연료전지용 산소 환원 반응 촉매 (Ultrathin Carbon Shell-Coated Intermetallic Alloy Nanoparticles for Oxygen Reduction Reaction in Fuel Cells)

  • 최현우;고건우;최윤성;민지호;김윤진;;;;박범준;정남기
    • 한국재료학회지
    • /
    • 제34권4호
    • /
    • pp.208-214
    • /
    • 2024
  • To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 ℃ is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.

비담지 Co-B, Co-P-B 촉매를 이용한 NaBH4 가수분해 반응 (Hydrolysis Reaction of NaBH4 using Unsupported Co-B, Co-P-B Catalyst)

  • 오성준;정현승;정재진;나일채;안호근;박권필
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.11-15
    • /
    • 2015
  • 휴대용 고분자전해질 연료전지의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 본 연구에서는 비담지 Co-B, Co-P-B 촉매의 $NaBH_4$ 가수분해 특성에 대해 연구하였다. 촉매의 BET 표면적, 수소 수율, $NaBH_4$ 농도 영향, 촉매 내구성 등을 실험하였다. 비담지 Co-B 촉매의 BET 표면적은 $75.7m^2/g$으로 FeCrAlloy에 담지한 Co-B 촉매에 비해 BET 면적이 18배 높았다. 회분식 반응기에서 비담지 촉매들은 $NaBH_4$ 20~25 wt% 사용조건에서 97.6~98.5%의 높은 수소 수율을 보였다. $NaBH_4$ 농도가 30 wt%로 증가하면서 수소수율은 95.3~97.0%로 감소하였다. 비담지 촉매의 촉매 손실율은 FeCrAlloy에 담지 촉매에 비해 낮았으며, $NaBH_4$ 농도가 증가하면서 촉매 손실율도 증가하였다. 연속 반응기에서 1.2 g 비담지 Co-P-B 촉매를 사용해서 약 $3{\ell}/min$ 발생속도로 가수분해 반응하여 90%의 수소 수율을 얻었다.

활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응 (Hydrolysis Reaction of NaBH4 Using Activated Cabon Supported Co-B/C, Co-P-B/C Catalyst)

  • 오소형;김유겸;배효준;김동호;변영환;안호근;박권필
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.641-646
    • /
    • 2018
  • 휴대용 고분자전해질 연료전지의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 본 연구에서는 활성탄 담지 Co-B/C, Co-P-B/C 촉매의 $NaBH_4$ 가수분해 특성에 대해 연구하였다. 촉매의 BET 표면적, 수소 수율, $NaBH_4$ 농도 영향, 촉매 내구성 등을 실험하였다. 활성탄에 담지시킴으로써 BET 면적이 비담지 촉매에 비해 2~3배 증가해 $500m^2/g$ 이상이 되었다. 활성탄 담지 촉매의 수소발생이 비담지 촉매보다 더 안정적이었다. 20 wt% $NaBH_4$에서 활성화 에너지가 59.4 kJ/mol로 Co-P-B/FeCrAlloy 촉매 보다 14% 낮았다. 활성탄 담지 촉매가 비담지 촉매에 비해 촉매 손실이 1/3~1/2로 감소해 활성탄에 촉매를 담지시킴으로써 내구성을 향상시킬 수 있었다.

바닷물을 이용한 NaBH4 가수분해에 의한 수소발생 (Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Sea Water)

  • 이대웅;오소형;김준성;김동호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.758-762
    • /
    • 2019
  • 이동용 고분자전해질 연료전지(PEMFC)의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 해상용으로 PEMFC가 사용될 때 해수를 이용해 $NaBH_4$를 가수분해 하면 경제적이다. 그래서 본 연구에서는 $NaBH_4$ 가수분해 과정에 증류수대신 해수를 이용해 수소를 발생시켰다. 활성탄 담지 Co-B/C 촉매를 사용해 $NaBH_4$ 가수분해 특성에 대해 연구하였다. 해수 사용시 $NaBH_4$ 농도와 NaOH농도가 증가하면서 수소수율이 감소하였다. 높은 $NaBH_4$와 NaOH농도에서 촉매 표면에 부산물이 부착되어 증류수에 비해 수소수율이 감소했다. $NaBH_4$ 가수분해 활성화에너지는 증류수와 해수 각각 59.3, 74.4kJ/mol로 해수에서 수소발생속도를 증류수와 같이 높이려면 반응온도를 $80^{\circ}C$이상 상승시켜야 함을 보였다.

고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향 (Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell)

  • 오소형;한유한;유동근;김명환;박지용;최영진;박권필
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.7-12
    • /
    • 2024
  • 고분자 전해질 연료전지(PEMFC) 내구성에 촉매 지지체 내구성이 미치는 영향이 크다. 촉매 지지체의 가속 내구 평가는 높은 전압(1.0~1.5 V)에서 진행되어 촉매층의 촉매와 이오노머 바인더도 같이 열화되어 지지체 내구성 평가에 방해가 된다. 내구성 평가대상인 지지체가 더 열화되는 조건을 찾고자 기존의 프로토콜 (DOE 프로토콜)을 개선하였다. 상대습도를 35% 낮추고 전압변화 횟수를 감소시킨 프로토콜 (MDOE)을 개발하였다. 1.0 ↔ 1.5 V 전압변화 사이클 반복 후에 촉매 비활성도 (MA)와 전기화학적 활성면적 (ECSA), 전기이중층 용량 (DLC), Pt 용해와 입자 성장 등을 분석하였다. 비활성도 감소 40% 도달하는데 MDOE 프로토콜은 500 사이클 밖에 안되어 DOE방법보다 전압변화 횟수를 감소시키면서 카본 지지체 열화를 DOE 프로토콜보다 50% 증가시킬 수 있었다.