DOI QR코드

DOI QR Code

Experimental Study of Performance of PEMFC Operated in Dead-End Mode

수소극 Dead-End 모드 고분자 전해질 연료전지의 실험적 연구

  • Ji, Sang-Hoon (Dept. of Intelligent Convergence systems, Seoul Nat'l Univ.) ;
  • Hwang, Yong-Sheen (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Choi, Jong-Won (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Lee, Dae-Young (Energy Mechanics Center, Korea Institute of Science and Technology) ;
  • Park, Joon-Ho (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Jang, Jae-Hyuk (Corporate R&D Institute, Samsung Electro-Mechanics) ;
  • Kim, Min-Soo (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Cha, Suk-Won (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 지상훈 (서울대학교 지능형융합시스템학과) ;
  • 황용신 (서울대학교 기계항공공학부) ;
  • 최종원 (서울대학교 기계항공공학부) ;
  • 이대영 (한국과학기술연구원 에너지메카닉스센터) ;
  • 박준호 (서울대학교 기계항공공학부) ;
  • 장재혁 (삼성전기 중앙연구소) ;
  • 김민수 (서울대학교 기계항공공학부) ;
  • 차석원 (서울대학교 기계항공공학부)
  • Received : 2010.01.07
  • Accepted : 2010.04.05
  • Published : 2010.06.01

Abstract

Portable fuel cells are commonly operated in the dead-end mode because of such as high fuel utilization. However, the performance of such systems deteriorates continuously with an increase in the amount of by-products such as water vapor and nitrogen. In this study, to verify the effect of water vapor on Proton Exchange Membrane Fuel Cells (PEMFCs), constant-load experiments were carried out for a current density of 600 mA/cm2 and a voltage of 0.4 V, respectively. The performance of the cell was more stable under constant voltage conditions than under constant current density conditions. Condensed water accumulated in the anode channel near the cell outlet. The experimental results show how the relative humidity (RH = 0.15, 0.4 and 0.75) of air at the cathode side affect the performance of PEMFCs with dead-end anode. At RH values higher than 0.15, the mean power density increased by up to 51% and the mean purge duration decreased by up to 25% compared to the corresponding initial values.

출구부가 폐쇄된 데드앤드 모드 운전은 연료이용률이 높고, 부가장치 소모동력이 작기 때문에 소형연료전지 분야에 널리 적용되고 있다. 하지만 수증기나 질소 등과 같은 불순물의 축적으로 인해 성능이 저하되는 단점을 가지고 있다. 본 논문에서는 이러한 성능 저하의 요인 중 수분 축적의 영향을 알아보기 위해 부하 방식에 따른 거동, 퍼징 전후 분극 성능, 수분 축적 분포, 공기극 상대습도에 따른 성능을 알아보았다. 본 실험에 적용된 운전 조건에서의 성능 거동은 정전압 부하(0.4V)보다 정전류밀도 ($600mA/cm^2$)부하에서 보다 안정적으로 나타났다. 가시화 창을 통해 수소극에 축적된 대부분의 수분은 출구부에 가까운 부분에 분포함을 알 수 있었다. 또한 공기극 상대습도(0.15, 0.4, 0.75 RH)가 높아질수록 성능 유지 시간은 감소한 반면 성능 감소율은 증가하였다. 특히, 상대습도 0.15에서의 성능 기준으로 평균출력밀도는 51% 증가하였고, 평균성능유지시간은 25% 감소하였다.

Keywords

References

  1. Donitz, W., 1998, "Fuel Cells for Mobile Applications, Status, Requirements and Future Application Potential," International Journal of Hydrogen Energy, Vol. 23, No. 7, pp 611-615. https://doi.org/10.1016/S0360-3199(97)00075-X
  2. Barbir, F., 2005, PEM fuel cells: Theory and practice, Elsevier Academic Press, New York
  3. Larminie, J. and Dicks, A., 2002, Fuel Cell Systems Explained, Wiley, Chichester
  4. Cacciola, G., Antonucci, V., Freni, S., 2001, "Technology up Date and New Strategies on Fuel Cells," Journal of Power Sources, Vol. 100, pp 67-79. https://doi.org/10.1016/S0378-7753(01)00884-9
  5. Dumercy, L., Pera, M. C., Glises, R., Hissel, D., Hamandi, S., Badin, F., Kauffmann, J. M., 2004, "PEFC Stack Operating in Anodic Dead End Mode," Fuel Cells, Vol. 4, No. 4, pp 352-357. https://doi.org/10.1002/fuce.200400053
  6. Himanen, O., Hottinen, T., Tuurala, S., 2007, "Operation of a Planar Free-Breathing PEMFC in Dead-End Mode," Electrochemistry Communications, Vol. 9, pp 891-894. https://doi.org/10.1016/j.elecom.2006.12.002
  7. Spernjak, D., Prasad, A. K., Advani, S. G., 2007, "Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single- Serpentine PEM Fuel Cell," Journal of Power Sources, Vol. 170, pp 334-344. https://doi.org/10.1016/j.jpowsour.2007.04.020
  8. Kim. H. I., Nam. J. H., Shin. D. H., Chung. T. Y. and Kim. Y. G., 2009, "Experimental and Numerical Assessment of Liquid Water Exhaust Performance of Flow Channels in PEM Fuel Cells," Trans. of the KSME(B), Vol. 33, No. 2, pp. 85-92 https://doi.org/10.3795/KSME-B.2009.33.2.85
  9. Ge, S., Wang, C. Y., 2004, "Liquid Water Formation and Transport in the PEFC Anode," Journal of the Electrochemical Society, Vol. 154, No. 10, pp B998-B1005.
  10. Siegel, J. B., McKay, D. A., Stefanopoulou, A. G., Hussey, D. S., Jacobson, D. L., 2008, "Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode ," Journal of the Electrochemical Society, Vol. 155, No. 11, pp 1168-1178. https://doi.org/10.1149/1.2976356
  11. O'Hayre, R., Cha, S. W., Colella, W., Prinz, F. B., 2005, "Fuel Cell Fundamentals," Wiley, New York
  12. Lim, C and Wang, C. Y., 2004, "Effects of Hydrophobic Polymer Content in GDL on Power," Electrochimica Acta, Vol. 49, pp 4149-4156. https://doi.org/10.1016/j.electacta.2004.04.009
  13. Kim. H. S. and Min. K. D., 2006, "Effect of Main Operating Conditions on Cathode Flooding Characteristics in a PEM Unit Fuel Cell," Trans. of the KSME(B), Vol. 30, No. 5, pp. 489-495. https://doi.org/10.3795/KSME-B.2006.30.5.489

Cited by

  1. Study on Ohmic Resistance of Polymer Electrolyte Fuel Cells Using Current Interruption Method vol.37, pp.4, 2013, https://doi.org/10.3795/KSME-B.2013.37.4.353