• Title/Summary/Keyword: Proton Exchange Membrane

Search Result 528, Processing Time 0.026 seconds

Performance of the Small PEMFC according to Cathode (Cathode에 따른 소형 PEM 연료전지의 성능 변화)

  • Lee, Se-Won;Lee, Kang-In;Park, Min-Soo;Chu, Chong-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.283-290
    • /
    • 2008
  • In this paper, experiments with an air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single-cell and 6-cell stack were used in the experiments. The experimental results showed that the open-type cathode flow field plate gave a better performance than the small channel type. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical one. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, the PEMFC generated more stable power in the mass transport loss region. Since stable power in the mass transport region is closely related to the air supply, computational fluid dynamics (CFD) analysis for air-breathing PEMFC of different cathode surface directions was performed.

Fuel Cell Modeling with Output Characteristics of Boost Converter (연료전지 모델링 및 부스트 컨버터 출력 특성)

  • Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.91-97
    • /
    • 2014
  • This paper proposes a modeling of fuel cell which replaces dc source during simulation. Fuel cells are electrochemical devices that convert chemical energy in fuels into electrical energy. This system has high efficiency and heat, no environmental chemical pollutions and noise. Proton exchange membrane fuel cells (PEMFC) are commonly used as a residential generator. These fuel cells have different electrical characteristics such as a low voltage and high current compared with solar cells. And there are different behaviors in the V-I curve in the temperature and pressure. Therefore, the modeling of fuel cell should consider wide voltage range and slow current response and the resulting electrical model is applied to boost converter with fuel cell as an input source.

A Study on Optimal Design and Operational Features of a Stand-alone 500W PEMFC System (독립형 500W PEMFC 시스템의 최적 설계 및 구동 특성에 관한 연구)

  • Park, Se-Joon;Ha, Min-Ho;Choi, Hong-Jun;Cha, In-Su;Yoon, Jeong-Phil;Lim, Jung-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.320-322
    • /
    • 2008
  • The international oil price now has been going up every each day, about 120 USD per a gallon April 2008, so that most of countries in the world are concern of the the shortage of petroleum and the development of new and renewable energy resources. This paper presents optimal design and operational features of stand-alone 500W PEMFC(Proton Exchange Membrane Fuel Cell) system which can be a substitute instead fossil fuel. The stack of PEMFC is composed of 35 laminated graphites, and a unit cell of the stack has electrical characteristics as below; 14W, 0.9V, 15A. The other components of BOP(Balance of Plant) are composed of hydrogen and nitrogen tanks, regulators, 3way solenoid valves, mass flow meters, etc.

  • PDF

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

The characteristic analysis and model of PEM fuel cell for residential application (가정용 고분자 연료전지의 모델과 특성해석)

  • Cho, Y.R.;Kim, N.H.;Han, K.H.;Joo, K.D.;Yun, S.Y.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.277-279
    • /
    • 2005
  • The imbalance of energy demand and supply caused by rapid industrialization around the world and the associated environmental issues require and alternative energy source with possible renewable fuels. Political instability and depletion of cruel oils are other factors that cause fluctuation of oil price. Securing a new alternative energy source for the next century became an urgent issue that our nation is confronting with. As a matter of fact, the fuel cell technology can be widely used as next generation energy regardless of regions and climate. Specially, the ability of expansion and quick installation enable one to apply it for distributed power, where the technology is already gaining remarkable attentions for the application. Particularly, leading industrialized nations are focusing on the PEM fuel dell with anticipation that this technology will find their place of applications in the vehicles and homes. In this study, demonstrate the multi physics modeling of a proton exchange membrane(PEM) fuel cell with interdigitated flow field design. The model uses current balances, mass balance(Maxwell-Stefan diffusion for reactant, water and nitrogen gas) and momentum balance(gas flow) to simulate the PEM fuel cell behavior.

  • PDF

Performance Evaluation of Free breathing Fuel Cell by using Synthetic Jet Air Blower (Synthetic Jet Air Blower를 이용한 Free Breathing 연료전지의 성능 평가)

  • Choi, Jong-Pil;Ku, Bo-Sung;Jang, Jae-Hyuk;Seo, Young-Ho;Kim, Byeong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2834-2838
    • /
    • 2008
  • An free breathing proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the several effect on the performance of a fuel cell such as air flow rate, opening ratio, and cathode structures. Especially, an air flow rate is critical condition to improve the fuel cell performance. In this paper, we developed a synthetic jet micro air blower to supply high stoichiometric air. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. In comparison with free convection fuel cells, the forced-convection fuel cell which equipped synthetic jet micro air blower brings higher performance and stability for long term test. Also, power consumption of the synthetic jet micro air blower is under 0.3W. The results show that the maximum power density was $188mW/cm^2$ at $400mA/cm^2$. The maximum power density was higher 40% than power density of free convection fuel cell.

  • PDF

An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure (밀폐된 공간 내 공랭식 PEMFC의 자연대류 열전달에 대한 실험적 연구)

  • LEE, JUNSIK;KIM, SEUNGGON;SOHN, YOUNGJUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from $25^{\circ}C$ to $-60^{\circ}C$ and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.

Analysis of R&D Investment for Hydrogen and Fuel Cell (수소.연료전지 연구개발 투자현황 분석)

  • Park, No-Eon;Kim, Hyung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.143-148
    • /
    • 2010
  • Research and Development (R&D) investment of hydrogen and fuel cell, funded by government from 2007 to 2008 in Korea, has been analyzed. R&D investment of hydrogen and fuel cell in 2008 would see 9% and 29% of total budget in the field of renewable energy, respectively. It was found that R&D investment is mainly dependent on mission of Ministry in Korea. Basic and apply research would be mainly invested by Ministry of Education, Science and Technology (MEST), while development research would be conducted by Ministry of Knowledge Economy (MKE). In R&D investment by performer, hydrogen technology would be conducted by government-funded institute and university. It was also shown that funds for hydrogen production have been much supported than hydrogen storage. Meanwhile, fuel cell would be mainly conducted by major companies. It was also shown that funds for proton exchange membrane fuel cell (PEMFC) have been much invested than other technology in fuel cell.

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.