• 제목/요약/키워드: Proton Conductor

검색결과 32건 처리시간 0.023초

Preparation of Hybrid Proton Conductor by Sol-Gel Process from Nafion Solution

  • Kim, Sang-Ock;Kim, Jeong-Soo
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.174-177
    • /
    • 2002
  • Proton-conducting hybrid materials composed of silica and Nafion polymer were prepared from the sol-gel synthesis of silica in aqueous Nafion solution. The compositions of hybrid proton conductors were adjusted with the changing ratios of tetraethyl orthosilicate to Nafion. The thermal analysis, FTIR, SEM, and X-ray diffraction studies have proved the formation of Nafion/silica hybrid materials and no remarkable phase separation was observed, which led to an assumption that the macromolecular chain of silica and Nafion was homogeneously interlaned.

중온형 연료전지를 위한 다성분계 세라믹 수소이온 전도체 제조 (Preparation of multi-component ceramic proton conductors for intermediate temperature fuel cell)

  • 임병무;서동호;박상선;이홍연;설용건
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.410-411
    • /
    • 2009
  • The multi-component ceramic proton conductor, $BaZr(Y)O_3-SiO_2-TiO_2-ZrO_2$ (BZY-STZ) and $LaPO_4-SiO_2-TiO_2-ZrO_2$ (LP-STZ), were synthesized by micro-emersion and sol-gel technique. The characterization of proton conductors were carried out using X-ray diffraction(XRD), thermogravimetric analysis(TGA), differential thermal analysis(DTA), impedance analysis. The proton conductors indicate the possibility of application for the intermediate temperature up to $700^{\circ}C$.

  • PDF

$SrCe_{0.95}Yb_{0.05}O_3$의 결함엄개와 전기전도 특성 (Defect Structure and Electrical Conductivities of $SrCe_{0.95}Yb_{0.05}O_3$)

  • 최정식;이도권;유한일
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.271-279
    • /
    • 2000
  • 5 m/o Yb-doped SrCeO3 proton conductor was prepared by a solid state reaction method and its total electriccal conductivity measured as a function of both oxygen partial pressure and water vapor partial pressure in the temperature range of 500~100$0^{\circ}C$. From the total conductivity have been deconvoluted the partial conductivities of oxide ions, protons, and holes, respectively, on the basis of the defect model proposed. The equilibrium constant of hydrogen-dissolution reaction, proton concentration, and mobilities of oxygen vacancies and protons have subsequently been evaluated. It is verified that SrCe1-xYbxO3 is a mixed conductor of holes, protons and oxide ions and the proton conduction prevails as temperature decreases and water vapor pressure increases. The heat of water dissolution takes a representative value of $\Delta$HoH=-(140$\pm$20) kJ/mol-H2O, but tends to be less negative with increasing temperature. Migration enthalpies of proton and oxygen vacancy are extracted as 0.83$\pm$0.10 eV and 0.81$\pm$0.01 eV, respectively.

  • PDF

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • 센서학회지
    • /
    • 제33권2호
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

BaZrO3의 부피 변화가 프로톤 전도 에너지 장벽에 미치는 영향 (Effect of Volume Variation on Energy Barrier for Proton Conduction in BaZrO3)

  • 정용찬;김대희;김병국;김영철
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.474-478
    • /
    • 2010
  • We studied the energy barrier for proton conduction with volume variation in $BaZrO_3$ using a first principles study to investigate an optimum volume for the proton conduction. The volume increase of $BaZrO_3$ was expected to decrease the energy barrier for proton rotation and to increase that for proton transfer, and these trends could be extrapolated when the volume was decreased. However, the energy barriers for the proton transfer with the volume decrease were increased, while all the other energy barriers varied as expected. We could explain this unexpected behavior by the bent Zr-O-Zr structure, when the volume was decreased.

BaZrO3에서의 프로톤 전도와 상호작용에 대한 CuO의 영향 (Effect of Copper Oxide on Migration and Interaction of Protons in Barium Zirconate)

  • 정용찬;김대희;김병국;김영철
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.195-199
    • /
    • 2011
  • The effect of copper oxide on migration and interaction of protons in barium zirconate was investigated using density functional theory. One copper atom was substituted for a zirconium atom site, and a proton was added to a $3{\times}3{\times}3$ barium zirconate superstructure. An energy barrier of 0.89 eV for proton migration was the highest among several energy barriers. To investigate the interaction between multiple protons and a copper atom, two protons were added to the superstructure. Various proton positions were determined by the interaction between the two protons and the copper atom.

단위전지 제작을 통한 BaCe0.9M0.1O3−δ (M=La, Al)계 Proton 전도성 산화물 전해질의 특성평가 (Single Cell Test for Proton Conducting Oxide Electrolytes Based on the BaCe0.9M0.1O3−δ (M=La, Al) System)

  • 최순목;정성민;서원선;이홍림
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.694-700
    • /
    • 2008
  • Proton conducting oxides based on the $BaCe_{0.9}M_{0.1}O_{3-{\delta}}$ (M = La, AL) were tested for the alternative electrolyte materials of fuel cell. The power density for single cell of Air |Pt| $BaCe_{0.9}M_{0.1}O_{3-{\delta}}$ |Pt| $H_2(3%H_2O)$ system was maximum $0.04W/cm^2$ at $1000^{\circ}C$. In this system, proton transport number was proved to depend on the lattice parameters and the distortion of $CeO_6$ octahedral as a function of the ionic radii of acceptor ions. This proton conducting oxide system requires developing the new electrode materials for application.

BaR0.5+xTa0.5-xO3-δ (R=희토류 금속)계 Proton 전도체 특성에 미치는 수분의 영향 (Humidity Effect on the Characteristics of the Proton Conductor Based on the BaR0.5+xTa0.5-xO3-δ (R=Rare Earth) System)

  • 최순목;서원선;정성민;김신;이홍림
    • 한국세라믹학회지
    • /
    • 제45권5호
    • /
    • pp.290-296
    • /
    • 2008
  • $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structures which have been reported as proton conductors over $600^{\circ}C$ were studied. The $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure is known to be more easily synthesized and has better stability than normal $ABO_3$ perovskite structure. And it is stable at about $800^{\circ}C$ in the $CO_2$ atmosphere, whereas the $BaCeO_3$ perovskite is easily decomposed into carbonate. In addition, this $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure could simply produce oxygen vacancies within their structure not by introducing additional doping oxides but by just controling the molar ratio of $B'^{+3}$ and $B"^{+5}$ metal ions in the B site. Hence it is easy to design the structure which shows highly sensitive electrical conductivity to humidity. In this study, the single phase boundary of $BaR_{0.5+x}Ta_{0.5-x}O_{3-{\delta}}$(R = rare earth) complex perovskite structures and it's phase stability were investigated with changes in composition, x. And the humidity dependance of electrical conductivity at different $P_{H2O}$ conditions was investigated.

고체 수소이온 전도체를 이용한 중온형 연료전지 개발 (Development of Intermediate Temperature Fuel Cell Using a Solid Proton Conductor)

  • 서동호;김홍록;;설용건
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.22-32
    • /
    • 2008
  • 청정에너지의 중요성이 부각됨에 따라 수소연료를 활용한 고효율, 무공해 전력 공급원인 연료전지에 대한 관심이 증가하고 있다. 연료전지는 전기화학 반응에 의한 화학에너지를 직접 전기에너지로 변환시키는 장치로 자동차, 우주항공, 산업 및 가정용 발전 등에 적용할 수 있는 잠재력이 있다. 최근 재료 및 에너지 변환공정 차원에서 바람직한 $200{\sim}500^{\circ}C$의 온도범위에서 작동하는 중온형 연료전지에 대한 새로운 인식과 이 온도범위에서 사용 가능한 수소이온 전도성 물질의 개발 필요성이 요구되고 있다. 본 논문은 고체 수소이온 전도체의 특성과 기술 현황을 소개하고, perovskite형 고체 무기 산화물을 이용한 중온형 연료전지 응용에 관한 연구에 대하여 고찰하였다.