• Title/Summary/Keyword: Proton Accelerator

Search Result 114, Processing Time 0.03 seconds

Response Function of HPGe Detector using $^{23}Na$(p, $\gamma$)$^{24}Mg$ and $^{27}Al$(p, $\gamma$)$^{28}Si$ Reaction ($^{23}Na$(p, $\gamma$)$^{24}Mg$$^{27}Al$(p, $\gamma$)$^{28}Si$반응을 이용한 HPGe 검출기의 응답함수)

  • Park, Sang-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • In the present work, peak relative efficiency for the energy was obtained and response function was worked out. This study was carried out using the high resolution high efficiency HPGe detector(diameter 78.7 mm, length 86.5 mm) and NaI(Tl) detector for anti-compton. The anti-coincidence of the signals from the two detectors could be used to lessen the Compton effect signal; thus, the $\gamma$-ray energy resolution could be improved. The $\gamma$-ray spectrum was measured at $55^{\circ}$ to the direction of the incident proton beam. Reaction spectrum was obtained from the $^{23}Na$(p, $\gamma$)$^{24}Mg$ reaction at $E_p$ = 1424 keV and $^{27}Al$(p, $\gamma$)$^{28}Si$ reaction at $E_p$ = 992 keV. To accelerate the incident proton which creates the (p, $\gamma$) capture reaction, the 3 MeV Pelletron accelerator at the Tokyo Institute of Technology was used. Response function was worked out by a noble technique. We worked out a response function from 1.2 to 9.4 MeV at intervals of 0.75 MeV.

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

SNU 1.5 MV Van de Graaff Accelerator (V) -on the Operation of the High Voltage Stabilization System- (NU 1.5MV 반데그라프 가속기 (V) -고전압 안정화 계통의 동작-)

  • Bae, Y.D.;Bak, H.I.;Chung, K.H.;Woo, H.J.;Choi, B.H.
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.115-121
    • /
    • 1987
  • A high voltage stabilization system for the SNU 1.5MV Tandem Van do Graaff accelerator was set up and its operational characteristics were examined and optimized. The optimum parameters of beam transport system were experimentally determined, and under the proper condition the accelerated proton beam current of 350nA was obtained at the target chamber. Without the high voltage stabilization the observed magnitude of voltage fluctuation was $\Delta$V/ V=5.2$\times$10$^{-3}$ without ion beam and 7.2$\times$10$^{-3}$ with ion beam, respectively, and its apparent ripple frequency for voltage fluctuations was about 3Hz or less. Through the optimized operation of the high voltage stabilization system, the terminal voltage fluctuation was reduced to $\Delta$V/V=2.45$\times$10$^{-4}$ and the energy stability with $\Delta$E/E=2.44$\times$10$^{-4}$ was steadily maintained at the 247.3kV terminal voltage, and the stabilization factor was deduced to be 29.4.

  • PDF

Design, fabrication and test of a taper-type half-wave superconducting cavity with the optimal beta of 0.15 at IMP

  • Yue, Weiming;Zhang, Shengxue;Li, Chunlong;Jiang, Tiancai;Liu, Lubei;Wang, Ruoxu;Huang, Yulu;Tan, Teng;Guo, Hao;Zaplatin, Evgeny;Xiong, Pingran;Wu, Andong;Wang, Fengfeng;Zhang, Shenghu;Huang, Shichun;He, Yuan;Yao, Zeen;Zhao, Hongwei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1777-1783
    • /
    • 2020
  • As a part of R&D work for the high intensity proton linac of China Accelerator Driven Sub-critical System project, a superconducting half-wave cavity with a frequency of 162.5 MHz and an optimal beta of 0.15 (HWR015) has been developed at Institute of Modern Physics (IMP), Chinese Academy of Sciences. In this paper, the design and test results will be described in detail. We introduced a new stiffening strategy for the HWR cavity, the simulation results show that the cavity has much lower frequency sensitivity coefficient (df/dp), Lorentz force detuning coefficient (KL), and can achieve more stable mechanical properties. The performance of the HWR cavity operated in cryostat will be also reported.

Recent Status of Commercial PET Cyclotron and KOTRON-13 (KOTRON-13과 상용 PET 사이클로트론의 최근 기술 동향)

  • Chai, Jong-Seo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper is described on the development of KOTRON-13 and recent status of PET cyclotron by commercial cyclotron companies. KIRAMS has developed medical cyclotron which is KIRAMS-13. Samyoung Unitech produces KOTRON-13 with transfered technology by KIRAMS. As a part of Regional Cyclotron Installation Protect, KOTRON-13 cyclotrons and $[18F]FDG$ production modules are being installed at regional cyclotron centers in Korea. The medical concern with radiation technology has been growing for the last several years. Early cancer diagnosis through the cyclotron and PET-CT have been brought to public attention by commercial cyclotron models in the world. The new commercial cyclotron models are introduced compact low energy cyclotrons developed by CTI, GE, Sumitomo in recent. It produces different short-lived radioisotopes, such as $[^{18}F],\;[^{11}C],\;[^{13}N]\;and\;[^{15}O]$. For the better reliability acceleration particle is proton only. The characteristics of new model cyclotrons are changed to lower energy corresponding to less 13 MeV. New models have self-shielding and low power consumption. Design criteria for the different types of commercial cyclotrons are described with reference to hospital demands.

Consideration about LINAC movable range by H&N patient immobilization device manufacture (두경부환자 고정기구제작을 통한치료기 가동범위에 관한 고찰)

  • Jung DoHyung;Shim JinSeop;Youm DuSeok;Choi GyeSuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.63-67
    • /
    • 2004
  • Purpose : New therapy technique appeared in 3D-CRT or IMRT according to a radiation treatment developing and worked. Such treatment technique requires the radiation irradiation of many direction. It has many restriction at radiation irradiation of many direction to the linear acceleration deception of now actually. Consequently We make new fix device and measure consequently the improvement of the activate range. Method and Material : We upload the fix device on a linear accelerator Couch. We fixed Gantry at 45, 90, 135 and Couch is spin and measure the clearance of the equipment. Couch is fixed at 0 45 90 and measures the clearance of Gantry. We upload the Extended head holder(EHH) on a linear accelerator Couch. and We measure with the experiment of the front. Result : The action range did not have big difference to increase Gantry45. but The activate range of Couch increases the angle in Gantry 90 and Gantry 135 when it uses EHH. The activate range of Gantry increases the angle in Couch 45 when it uses EHH. We showed good activate situation all in Couch 0 and Couch 90. The utility of EHH could keep a behind radiation diminution. Conclusion : The radiation irradiation of many direction comes to be possible the utility of the fix instrument(EHH). The safety space between the patient and equipment or between equipment and equipment increased the utility of the fix device. Also, The manufacture is possible imports to rather cheap price. and We could bring the frugality of the treatment expendable supplies.

  • PDF

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF

Study on Concrete Activation Reduction in a PET Cyclotron Vault

  • Bakhtiari, Mahdi;Oranj, Leila Mokhtari;Jung, Nam-Suk;Lee, Arim;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.130-141
    • /
    • 2020
  • Background: Concrete activation in cyclotron vaults is a major concern associated with their decommissioning because a considerable amount of activated concrete is generated by secondary neutrons during the operation of cyclotrons. Reducing the amount of activated concrete is important because of the high cost associated with radioactive waste management. This study aims to investigate the capability of the neutron absorbing materials to reduce concrete activation. Materials and Methods: The Particle and Heavy Ion Transport code System (PHITS) code was used to simulate a cyclotron target and room. The dimensions of the room were 457 cm (length), 470 cm (width), and 320 cm (height). Gd2O3, B4C, polyethylene (PE), and borated (5 wt% natB) PE with thicknesses of 5, 10, and 15 cm and their different combinations were selected as neutron absorbing materials. They were placed on the concrete walls to determine their effects on thermal neutrons. Thin B4C and Gd2O3 were placed between the concrete wall and additional PE shield separately to decrease the required thickness of the additional shield, and the thermal neutron flux at certain depths inside the concrete was calculated for each condition. Subsequently, the optimum combination was determined with respect to radioactive waste reduction, price, and availability, and the total reduced radioactive concrete waste was estimated. Results and Discussion: In the specific conditions considered in this study, the front wall with respect to the proton beam contained radioactive waste with a depth of up to 64 cm without any additional shield. A single layer of additional shield was inefficient because a thick shield was required. Two-layer combinations comprising 0.1- or 0.4-cm-thick B4C or Gd2O3 behind 10 cm-thick PE were studied to verify whether the appropriate thickness of the additional shield could be maintained. The number of transmitted thermal neutrons reduced to 30% in case of 0.1 cm-thick Gd2O3+10 cm-thick PE or 0.1 cm-thick B4C+10 cm-thick PE. Thus, the thickness of the radioactive waste in the front wall was reduced from 64 to 48 cm. Conclusion: Based on price and availability, the combination of the 10 cm-thick PE+0.1 cmthick B4C was reasonable and could effectively reduce the number of thermal neutrons. The amount of radioactive concrete waste was reduced by factor of two when considering whole concrete walls of the PET cyclotron vault.

Comparative Evaluation of Radioactive Isotope in Concrete by Heavy Ion Particle using Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 중하전입자의 콘크리트 방사화 비교평가)

  • Bae, Sang-Il;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.359-365
    • /
    • 2021
  • A heavy particle accelerator is a device that accelerates particles using high energy and is used in various fields such as medical and industrial fields as well as research. However, secondary neutrons and particle fragments are generated by the high-energy particle beam, and among them, the neutrons do not have an electric charge and directly interact with the nucleus to cause radiation of the material. Quantitative evaluation of the radioactive material produced in this way is necessary, but there are many difficulties in actual measurement during or after operation. Therefore, this study compared and evaluated the generated radioactive material in the concrete shield for protons and carbon ions of specific energy by using the simulation code FLUKA. For the evaluation of each energy of proton beam and carbon ion, the reliability of the source term was secured within 2% of the relative error with the data of the NASA Space Radiation Laboratory(NSRL), which is an internationally standardized data. In the evaluation, carbon ions exhibited higher neutron flux than protons. Afterwards, in the evaluation of radioactive materials under actual operating conditions for disposal, a large amount of short-lived beta-decay nuclides occurred immediately after the operation was terminated, and in the case of protons with a high beam speed, more radioactive products were generated than carbon ions. At this time, radionuclides of 44Sc, 3H and 22Na were observed at a high rate. In addition, as the cooling time elapsed, the ratio of long-lived nuclides increased. For nonparticulate radionuclides, 3H, 22Na, and for particulate radionuclides, 44Ti, 55Fe, 60Co, 152Eu, and 154Eu nuclides showed a high ratio. In this study, it is judged that it is possible to use the particle accelerator as basic data for facility maintenance, repair and dismantling through the prediction of radioactive materials in concrete according to the cooling time after operation and termination of operation.

A Study on the Improvement of Gamma Ray Energy Spectrum Resolution through Electrical Noise Reduction of High Purity Ge Detector (고순도 Ge 검출기의 전기적 노이즈 감소를 통한 감마선 에너지 스펙트럼의 분해능 향상에 관한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.849-856
    • /
    • 2020
  • In the gamma-ray energy spectrum study, nuclide analysis through energy analysis is very important. High-purity Ge detectors, which are commonly used for gamma-ray energy measurements, are commonly used because of their high energy resolution and relatively high detection efficiency. However, in order to maintain a high energy resolution, the semiconductor detector has a problem in that it is difficult to maintain the original performance if the noise generated from the surrounding environment is not effectively blocked, and the effect of the expensive device is not achieved. Therefore, in this study, ground loop isolator (NEXT-001HDGL) was used to remove the electrical noise generated from the detector. In order to test the effect of improving energy resolution, HPGe detection device newly installed in the proton accelerator KOMAC was used. In the case of gamma-ray energy 2614 keV, the energy resolution was improved from (0.16 ± 0.02) % to (0.11 ± 0.01) %, and in the case of gamma-ray energy 662 keV of 137Cs isotope, the energy resolution was improved from (0.72 ± 0.07) % to (0.27 ± 0.03) %. This result is considered to be very useful for the gamma ray spectrum study using the HPGe detection equipment of KOMAC(Korea Multi-Purpose Accelerator Complex).