• Title/Summary/Keyword: Protocol Performance

Search Result 3,211, Processing Time 0.043 seconds

Slotted CDMA_ALOHA Protocol with Hybrid ARQ in Wireless Communication Network

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.194-199
    • /
    • 2007
  • In this paper, a slotted CDMA_ALOHA protocol with hybrid ARQ is proposed for the wireless CDMA communication networks. The proposed protocol combines the characteristics of the slotted ALOHA, CDMA, and the hybrid ARQ, in order to increase the throughput by reducing the number of retransmissions when the channel experiences heavy traffic. The main feature of the proposed protocol is the utilization of the forward error correction capability to correct errors that appear after the CDMA dispreading of the packets. The base station does not need to ask so often for retransmission of erroneous packets. It will request for retransmission only when the FEC capability is exceeded. The performance of the proposed protocol is analyzed by considering the packet collision probability as well as the bit error probability. The numerical results show that the system throughput is closely related to the bit error rate of the wireless link and the FEC coding rate.

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

(A Key Roaming Protocol with a New Password Hardening Scheme) (새로운 패스워드 강화 기법을 이용한 키 로밍 프로토콜)

  • 정현철;김승호
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.387-396
    • /
    • 2003
  • In this paper, we present more efficient Protocol than that of Ford and Kaliski. We use RSA in the roaming protocol and it Plays decisive role to reduce the total time cost. We show that our protocol is safe from various attacks. We present the performance of our protocol and verify that This protocol needs fewer secure channel like SSL than other protocols.

High Performance SoC On-chip-bus Architecture with Multiple Channels and Simultaneous Routing (다중 채널과 동시 라우팅 기능을 갖는 고성능 SoC 온 칩 버스 구조)

  • Lee, Sang-Hun;Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.24-31
    • /
    • 2007
  • Up to date, a lot of bus protocol and bus architecture are released though most of them are based on the shared bus architecture and inherit the limitation of performance. SNP (SoC Network Protocol), and hence, SNA (SoC Network Architecture) which are high performance on-chip-bus protocol and architecture, respectively, have been proposed to solve the problems of the conventional shared bus. We refine the SNA specification and improve the performance and functionality. The performance of the SNA is improved by supporting simultaneous routing for bus request of multiple masters. The internal routing logic is also improved so that the gate count is decreased. The proposed SNA employs XSNP (extended SNP) that supports almost perfect compatibility with AMBA AHB protocol without performance degradation. The hardware complexity of the improved SNA is not increased much by optimizing the current routing logic. The improved SNA works for IPs with the original SNP at its best performance. In addition, it can also replace the AMBA AHB or interconnect matrix of a system, and it guarantees simultaneous multiple channels. That is, the existing AMBA system can show much improved performance by replacing the AHB or the interconnect matrix with the SNA. Thanks to the small number of interconnection wires, the SNA can be used for the off-chip bus system, too. We verify the performance and function of the proposed SNA and XSNP simulation and emulation.

An Intelligent MAC Protocol Selection Method based on Machine Learning in Wireless Sensor Networks

  • Qiao, Mu;Zhao, Haitao;Huang, Shengchun;Zhou, Li;Wang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5425-5448
    • /
    • 2018
  • Wireless sensor network has been widely used in Internet of Things (IoT) applications to support large and dense networks. As sensor nodes are usually tiny and provided with limited hardware resources, the existing multiple access methods, which involve high computational complexity to preserve the protocol performance, is not available under such a scenario. In this paper, we propose an intelligent Medium Access Control (MAC) protocol selection scheme based on machine learning in wireless sensor networks. We jointly consider the impact of inherent behavior and external environments to deal with the application limitation problem of the single type MAC protocol. This scheme can benefit from the combination of the competitive protocols and non-competitive protocols, and help the network nodes to select the MAC protocol that best suits the current network condition. Extensive simulation results validate our work, and it also proven that the accuracy of the proposed MAC protocol selection strategy is higher than the existing work.

Optimal Header Compression of MIPv6 and NEMO Protocol for Mobility Support in 6LoWPAN (6LoWPAN의 이동성 지원을 위한 MIPv6와 NEMO Protocol의 최적 헤더 압축)

  • Ha, Min-Keun;Hong, Sung-Min;Kim, Young-Joo;Kim, Dae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.55-59
    • /
    • 2010
  • Currently in a Ubiquitous Sensor Network (USN) research field, supporting mobility is recognized as an important technology. MIPv6 and Network Mobility(NEMO) Basic Support Protocol are standard protocols to support mobility in the Internet. However, if they are applied to USN with no modification, handoff performance decreases due to the size of their binding message. An existing lightweight protocol for NEMO protocol has a compatibility problem of Sequence Num. and does not optimally compress binding messages considering 6LoWPAN network structure and addressing. This paper proposes optimal header compression which supports node-based mobility and network-based mobility. Our optimal compression technique compresses a 32bytes binding update(BU) message and a 12bytes binding ACK(BA) message of MIPv6 into 13bytes and 3bytes, and a 40bytes BU message and a 12bytes BA message of NEMO protocol into 13bytes and 3bytes. The result shows that our protocol compresses 15bytes (NEMO-BU) and 1byte (NEMO-BA) more than the existing protocol and achieves 8.72% handoff performance improvement.

Performance Analysis of the Multicasting Protocol Using Division of the Control Channel in WDM Networks (파장분할 다중화 통신망에서 제어채널 분할을 이용한 멀티캐스팅 프로토콜의 성능분석)

  • 정길현;이정규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.842-849
    • /
    • 2000
  • In this paper, We analyzed the protocol to improve the performance of the multicast traffic processing in WDM networks. In the protocol, control channels are devided into contention-less minislots and contention minislots. And the packets which fail to have successful reservation in the present time slot have priority to have successful reservation in the contention-less minislots of the next time slot. Therefore, control channel contentions and destination conflicts can be reduced with the use of contention-less minislots. For the multicast traffic processing, the theoretical analysis and computer simulation are important to estimate the network performance and to calculate the optimized number of contention-less minislots. In this paper, the state transition probability of the number of contention-less minislots and arrival packets are calculated using 4-dimension matrix. The maximum number of contention-less minislots is equal to the number of channels for maximum performance improvement of the system. It is theoretical analysis and prove to computer simulation the performance of the protocol.

  • PDF

Performance Evaluation of End-to-End Security Protocols in WiBro using NS-2 (NS-2를 이용한 WiBro상에서의 종단 간 보안 프로토콜의 성능평가 및 분석)

  • Kim, Jung-Yoon;Song, Se-Hwa;Kim, In-Hwan;Hwang, In-Yong;Kim, Seok-Joong;Choi, Hyoung-Kee
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.184-190
    • /
    • 2009
  • WiBro has advantages when both WLAN and 3G UMTS are adopted. Much research is being carried out in this area. However, the WiBro specification does not consider end-to-end security. Hence, another security protocol has to be adopted to support secure communication. Most previous research only focused on WiBro MAC performance improvement or security. In this paper, we adopt a security protocol such as IPsec, TLS, and DTLS, well known end-to-end security protocols, to make full use of WiBro in the IP network. Using NS-2 we simulated the adoption of end-to-end security protocol and evaluated performance and usability. Simulation shows DTLS had some performance advantages. All the protocols, TLS and IPsec are also suitable for use in WiBro.

Performance analysis of a MAC Protocol on WDM Non-Slotted Ring (Fixed Length Packet) Network (Non-Slotted Ring (Fixed Length Packet) 구조를 가지는 WDM 광 네트워크의 성능 분석)

  • 정지훈;김종훈
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.229-231
    • /
    • 2000
  • Nowadays, the telecommunication service provider has witnessed an unprecedented growth in data traffic and the need for networking. optical fiber can provide some THz of huge bandwidth WDM technology has been an emerging issue for the efficient use of optical links. WDM uses a number of different wavelength that are assigned to each channel. The minimal number of optical transceivers and receivers should be used in a node to build an economic WDM transmission system without degrading system performance. Hence, the analysis of performance parameters such as throughput and delay is important to guarantee the WDM system performance. in this paper, the performance of a MAC protocol on a slotted WDM system that has a tunable transmitter(Txt), a tunable receiver(Rxt), and a fixed receiver(Rxf), respectively, on each node, was statistically analyzed The computer simulation validates the performance analysis.

  • PDF

Prioritized Channel Contention Access Method for TDMA based MAC Protocol in Wireless Mesh Network (WMN에서 TDMA 기반 MAC Protocol을 위한 우선순위 채널 경쟁 접근 방법)

  • Yun, Sang-Man;Lee, Soon-Sik;Lee, Sang-Wook;Jeon, Seong-Geun;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1883-1890
    • /
    • 2009
  • Existing MAC protocol can not show good performance in WMN environment. New MAC protocols is proposed because of Mobile Point's mobility, entire distributed environment, heavy traffic problems. This thesis proposes new channel contention method fur Mesh DCF. Mesh DCF uses ACH phase in TDMA frame to perform selection and elimination. Prioritized phases's count m and Fair Elimination phases's count n is determine contention level and make string probability to only one win the contention. Contention Number group's count K to determine the contention level in Fair Elimination Phase gives Fairness but make low probability to only one win the contention. It is sure that enough size of n and K can improve entire performance as result.