• 제목/요약/키워드: Protein tyrosine kinase inhibitor

검색결과 105건 처리시간 0.032초

Proteomic Analysis and the Antimetastatic Effect of N-(4methyl)phenyl-O-(4-methoxy) phenyl-thionocarbamate-Induced Apoptosis in Human Melanoma SK-MEL-28 cells

  • Choi Su-La;Choi Yun-Sil;Kim Young-Kwan;Sung Nack-Do;Kho Chang-Won;Park Byong-Chul;Kim Eun-Mi;Lee Jung-Hyung;Kim Kyung-Mee;Kim Min-Yung;Myung Pyung-Keun
    • Archives of Pharmacal Research
    • /
    • 제29권3호
    • /
    • pp.224-234
    • /
    • 2006
  • We employed human SK-MEL-28 cells as a model system to identify cellular proteins that accompany N-(4-methyl)phenyl-O-(4-methoxy)phenyl-thionocarbamate (MMTC)-induced apoptosis based on a proteomic approach. Cell viability tests revealed that SK-MEL-28 skin cancer cells underwent more cell death than normal HaCaT cells in a dose-dependent manner after treatment with MMTC. Two-dimensional electrophoresis in conjunction with matrixassisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis or computer matching with a protein database further revealed that the MMTC-induced apoptosis is accompanied by increased levels of caspase-1, checkpoint suppressor-1, caspase-4, NF-kB inhibitor, AP-2, c-Jun-N-terminal kinase, melanoma inhibitor, granzyme K, G1/S specific cyclin D3, cystein rich protein, Ras-related protein Rab-37 or Ras-related protein Rab-13, and reduced levels of EMS (oncogene), ATP synthase, tyrosine-phosphatase, Cdc25c, 14-3-3 protein or specific structure of nuclear receptor. The migration suppressing effect of MMTC on SK-MEL-28 cell was tested. MMTC suppressed the metastasis of SK-MEL-8 cells. It was also identified that MMTC had little angiogenic effect because it did not suppress the proliferation of HUVEC cell line. These results suggest that MMTC is a novel chemotherapeutic and metastatic agents against the SK-MEL-28 human melanoma cell line.

Octyl Gallate Inhibits ATP-induced Intracellular Calcium Increase in PC12 Cells by Inhibiting Multiple Pathways

  • Guo, Yujie;Hong, Yi-Jae;Jang, Hyun-Jong;Kim, Myung-Jun;Rhie, Duck-Joo;Jo, Yang-Hyeok;Hahn, Sang-June;Yoon, Shin-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2010
  • Phenolic compounds affect intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) signaling. The study examined whether the simple phenolic compound octyl gallate affects ATP-induced $Ca^{2+}$ signaling in PC12 cells using fura-2-based digital $Ca^{2+}$ imaging and whole-cell patch clamping. Treatment with ATP ($100\;{\mu}M$) for 90 s induced increases in $[Ca^{2+}]_i$ in PC12 cells. Pretreatment with octyl gallate (100 nM to $20\;{\mu}M$) for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ response in a concentration-dependent manner ($IC_{50}=2.84\;{\mu}M$). Treatment with octyl gallate ($3\;{\mu}M$) for 10 min significantly inhibited the ATP-induced response following the removal of extracellular $Ca^{2+}$ with nominally $Ca^{2+}$-free HEPES HBSS or depletion of intracellular $Ca^{2+}$ stores with thapsigargin ($1\;{\mu}M$). Treatment for 10 min with the L-type $Ca^{2+}$ channel antagonist nimodipine ($1\;{\mu}M$) significantly inhibited the ATP-induced $[Ca^{2+}]_i$ increase, and treatment with octyl gallate further inhibited the ATP-induced response. Treatment with octyl gallate significantly inhibited the $[Ca^{2+}]_i$ increase induced by 50 mM KCI. Pretreatment with protein kinase C inhibitors staurosporin (100 nM) and GF109203X (300 nM), or the tyrosine kinase inhibitor genistein ($50\;{\mu}M$) did not significantly affect the inhibitory effects of octyl gallate on the ATP-induced response. Treatment with octyl gallate markedly inhibited the ATP-induced currents. Therefore, we conclude that octyl gallate inhibits ATP-induced $[Ca^{2+}]_i$ increase in PC12 cells by inhibiting both non-selective P2X receptor-mediated influx of $Ca^{2+}$ from extracellular space and P2Y receptor-induced release of $Ca^{2+}$ from intracellular stores in protein kinase-independent manner. In addition, octyl gallate inhibits the ATP-induced $Ca^{2+}$ responses by inhibiting the secondary activation of voltage-gated $Ca^{2+}$ channels.

Imatinib-mesylate에 의한 과민성 폐렴 1예 (A Case of Imatinib-mesylate associated Hypersensitivity Pneumonitis)

  • 이재웅;김혜진;김규진;신경철;홍영훈;정진홍;이관호
    • Tuberculosis and Respiratory Diseases
    • /
    • 제59권4호
    • /
    • pp.423-426
    • /
    • 2005
  • Imatinib-mesylate는 만성 골수성 백혈병과 소화기 위장관 기질암의 효과적인 치료제로 인정되면서 사용량이 급격하게 증가하고 있다. Imatinib-mesylate로 치료 중 발생하는 기침이나 호흡곤란은 대부분 폐부종이나 흉수, 간질성 폐질환에 의하여 발생하며, 간질성 폐질환의 경우 조직학적으로는 비특이적 간질성 폐렴, 과민성 폐렴, 호산구 침착 등의 형태로 발생한다. 그러나 imatinib-mesylate에 의하여 간질성 폐질환이 발생하는 기전은 아직 알려져 있지 않다. 치료는 대부분 imatinib-mesylate를 중단하거나 부신피질호르몬제를 사용한 후 호전된다. Imatinib-mesylate를 사용하는 경우 호흡기계에 발생하는 부작용에 대한 관찰이 필요할 것이다. 저자들은 위장관 기질암으로 imatinib-mesylate를 복용하던 중 발생한 과민성 폐렴을 경험하여 보고하는 바이다.

마우스 섬유아세포(3T3 fibroblast cells)에서 Insulin-like Growth Factor-I(IGF-I) 및 IGF Binding Protein-3 (IGFBP-3)이 세포증식에 미치는 영향 (The Effect of Insulin-Like Growth Factor-I(IGF-I) and IGF Binding Protein-3(IGFBP-3) on Cellular Proliferation in Mouse 3T3 Fibroblast Cells)

  • 조철호;곽승민;문태훈;조재화;류정선;이홍렬
    • Tuberculosis and Respiratory Diseases
    • /
    • 제47권5호
    • /
    • pp.618-628
    • /
    • 1999
  • 연구배경: 세포성장은 세포증식과 세포죽음의 균형에 의해 이루어 진다. 세포성장에 관여하는 여러 growth factor증 IGF-I은 IGF-IR와 결합하여 세포증식을 유발하는 mitogen으로 알려져 있다. 또한 IGF-I에 결합하는 IGFBPs중에 IGFBP-3는 혈액내에 가장 많은 carrier protein으로, IGF-I과 결합하여 IGF-I의 세포증식 효과를 증가 혹은 억제시킨다. 방 법: 3T3 fibroblast 세포를 이용하여 IGF-I과 IGF-IR transcripts를 northern blot으로 확인하고, IGF-I에 의한 mitogenic effect를 MTT assay 및 $^3H$-thymidine incorporation test로 관찰하고, IGF-I의 receptor인 IGF-IR의 활성화를 보기 위해 intracellular $\beta$-subunit의 tyrosine kinase domain의 phosphorylation을 western blot으로 관찰하였다. 또한 IGFBP-3가 3T3 세포에서 mitogenic effect에 미치는 영향을 보기 위해 anti-IGFBP-3와 ${\alpha}IR_3$을 단독 및 병용투여하여 관찰하였다. 결 과: 3T3 세포는 IGF-I와 IGF-IR의 mRNA expression을 보였으며, IGF-I을 투여시 IGF-IR의 intracelluar cytoplasmic protein인 $\beta$-subunit의 tyrosine kinase domain을 phosphorylation시켜 활성화시키며, 5%, 1% serum-containing media에서 세포증식을 보였으나, serum-free media에서는 세포증식을 보이지 않았다. 또한 anti-IGFBP-3 투여와 ${\alpha}IR_3$과 anti-IGFBP-3를 병용투여시는 세포종식이 각각 2배이상 증가하였으나, ${\alpha}IR_3$을 4시간 전처치후 ${\alpha}IR_3$과 anti-IGFBP-3를 병용투여시는 anti-IGFBP-3에 의한 세포종식이 보이지 않은 것으로 보아 IGF -I/IGFBP-3 결합에서 분리되는 free IGF-I어l 의해 세포증식이 유도된 것으로 생각된다. 결 론: IGF-I은 IGF-IR를 phosphorylation시켜 mitogenic effect를 보이며, IGFBP-3는 IGF-I의 mitogenic effect를 억제하는 것으로 생각된다.

  • PDF

인간 A549 폐암세포에서 비스테로이드성 항염증제와 genistein의 복합처리에 의한 NAG-1 의존적 세포사멸 증진 효과 (Combined Treatment of Nonsteroidal Anti-inflammatory Drugs and Genistein Synergistically Induces Apoptosis via Induction of NAG-1 in Human Lung Adenocarcinoma A549 Cells)

  • 김초희;김민영;이수연;문지영;한송이;박혜경;강호성
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1073-1080
    • /
    • 2009
  • 비스테로이드성 항염증약(nonsteroidal anti-inflammatory drugs; NSAIDs)은 항염 및 진통효과를 나타내며, 염증억제 외에 다양한 신호전달 분자를 통해 여러 가지 세포생리활성을 조절하며, 암세포에서는 세포사멸 유도를 통한 항암제 효과를 보이고 있다. 본 연구에서는 NSAIDs가 암세포사멸프로그램을 작동시키는데 있어 phosphatidyl inositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) 그리고 MEK1/2-ERK1/2 신호 전달계과 같은 anti-apoptotic program이 NSAIDs의 효과를 경감시키는 것으로 예상하고, 이들 항세포사멸 프로그램을 억제하였을 경우, NSAIDs의 세포사멸 유도작용이 증가되는지 그 가능성을 조사하였다. 세포사멸은 Hoeschst 33342으로 핵응축과 핵 쪼개짐을 염색하여 확인하였다. Western blotting을 통해 단백질 발현과 역전사중합효소연쇄반응을 통해 mRNA 발현을 확인하였다. NSAIDs 처리와 동시에 PI3K-Akt/PKB와 MEK-ERK1/2 신호전달계의 억제제를 함께 처리했을 때, NSAIDs의 세포사멸유도작용이 증가함을 확인하였다. 또한 PI3K와 MEKl/2 신호전달계의 상위에 존재하는 receptor tyrosine kinases (RTKs)의 억제제인 genistein을 함께 처리하였을 때에도 유사한 효과가 나타남을 확인하였다. 그리고 이들 복합처리에 의해 NAG-1 발현이 증가하며 NAG-1 interference 하였을 경우 복합처리에 의한 세포사멸증진 효과가 사라짐을 확인하였다. 본 연구결과는 암세포에 활성화 되어 있는 세포생존프로그램을 제어하는 물질(genistein 혹은 LY294002+U0126)을 복합처방함으로써 NSAIDs의 항암작용을 증진시킬 수 있음을 보여준다.

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • 제41권3호
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

Secretome Analysis of Host Cells Infected with Toxoplasma gondii after Treatment of Human Epidermal Growth Factor Receptor 2/4 Inhibitors

  • Kim, Hye-Jung;Ahn, Hye-Jin;Kang, Hyeweon;Park, Jaehui;Oh, Seul gi;Choi, Saehae;Lee, Won-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제58권3호
    • /
    • pp.249-255
    • /
    • 2020
  • Toxoplasma gondii, a ubiquitous, intracellular parasite of the phylum Apicomplexa, infects an estimated one-third of the human population as well as a broad range of warm-blooded animals. We have observed that some tyrosine kinase inhibitors suppressed the growth of T. gondii within host ARPE-10 cells. Among them, afatinib, human epithermal growth factor receptor 2 and 4 (HER2/4) inhibitor, may be used as a therapeutic agent for inhibiting parasite growth with minimal adverse effects on host. In this report, we conducted a proteomic analysis to observe changes in host proteins that were altered via infection with T. gondii and the treatment of HER2/4 inhibitors. Secreting proteins were subjected to a procedure of micor basic reverse phase liquid chromatography, nano-liquid chromatography-mass spectrometry, and ingenuity pathway analysis serially. As a result, the expression level of heterogeneous nuclear ribonucleoprotein K, semaphorin 7A, a GPI membrane anchor, serine/threonine-protein phosphatase 2A, and calpain small subunit 1 proteins were significantly changed, and which were confirmed further by western blot analysis. Changes in various proteins, including these 4 proteins, can be used as a basis for explaining the effects of T. gondii infections and HER2/4 inhibitors.

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF

Anti-Proliferative Effects of Dendrophthoe pentandra Methanol Extract on BCR/ABL-Positive and Imatinib-Resistant Leukemia Cell Lines

  • Zamani, Afiqah;Jusoh, Siti Asmaa Mat;Al-Jamal, Hamid Ali Nagi;Sul'ain, Mohd Dasuki;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권11호
    • /
    • pp.4857-4861
    • /
    • 2016
  • Background: Imatinib mesylate, a tyrosine kinase inhibitor specifically targeting the BCR/ABL fusion protein, induces hematological remission in patients with chronic myeloid leukemia (CML). However, the majority of CML patients treated with imatinib develop resistance with prolonged therapy. Dendrophthoe pentandra (L.) Miq. is a Malaysian mistletoe species that has been used as a traditional treatment for several ailments such as smallpox, ulcers, and cancers. Methods: We developed a resistant cell line (designated as K562R) by long-term co-culture of a BCR/ABL positive CML cell line, K562, with imatinib mesylate. We then investigated the anti-proliferative effects of D. pentandra methanol extract on parental K562 and resistant K562R cells. Trypan blue exclusion assays were performed to determine the IC50 concentration; apoptosis and cell cycle analysis were conducted by flow cytometry. Results: D. pentandra extract had greater anti-proliferative effects towards K562R ($IC50=192{\mu}g/mL$) compared to K562 ($500{\mu}g/mL$) cells. Upon treatment with D. pentandra extract at the IC50. concentration: K562 but not K562R demonstrated increase in apoptosis and cell cycle arrest in the G2/M phase. Conclusion: D. pentandra methanol extract exerts potent anti-proliferative effect on BCR/ABL positive K562 cells.

Picropodophyllotoxin Inhibits Cell Growth and Induces Apoptosis in Gefitinib-Resistant Non-Small Lung Cancer Cells by Dual-Targeting EGFR and MET

  • Jin-Young, Lee;Bok Yun, Kang;Sang-Jin, Jung;Ah-Won, Kwak;Seung-On, Lee;Jin Woo, Park;Sang Hoon, Joo;Goo, Yoon;Mee-Hyun, Lee;Jung-Hyun, Shim
    • Biomolecules & Therapeutics
    • /
    • 제31권2호
    • /
    • pp.200-209
    • /
    • 2023
  • Patients with non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to the tyrosine kinase inhibitor gefitinib, however, the treatment becomes less effective over time by resistance mechanism including mesenchymal-epithelial transition (MET) overexpression. A therapeutic strategy targeting MET and EGFR may be a means to overcoming resistance to gefitinib. In the present study, we found that picropodophyllotoxin (PPT), derived from the roots of Podophyllum hexandrum, inhibited both EGFR and MET in NSCLC cells. The antitumor efficacy of PPT in gefitinib-resistant NSCLC cells (HCC827GR), was confirmed by suppression of cell proliferation and anchorage-independent colony growth. In the targeting of EGFR and MET, PPT bound with EGFR and MET, ex vivo, and blocked both kinases activity. The binding sites between PPT and EGFR or MET in the computational docking model were predicted at Gly772/Met769 and Arg1086/Tyr1230 of each ATP-binding pocket, respectively. PPT treatment of HCC827GR cells increased the number of annexin V-positive and subG1 cells. PPT also caused G2/M cell-cycle arrest together with related protein regulation. The inhibition of EGFR and MET by PPT treatment led to decreases in the phosphorylation of the downstream-proteins, AKT and ERK. In addition, PPT induced reactive oxygen species (ROS) production and GRP78, CHOP, DR5, and DR4 expression, mitochondrial dysfunction, and regulated involving signal-proteins. Taken together, PPT alleviated gefitinib-resistant NSCLC cell growth and induced apoptosis by reducing EGFR and MET activity. Therefore, our results suggest that PPT can be a promising therapeutic agent for gefitinib-resistant NSCLC.