DOI QR코드

DOI QR Code

Picropodophyllotoxin Inhibits Cell Growth and Induces Apoptosis in Gefitinib-Resistant Non-Small Lung Cancer Cells by Dual-Targeting EGFR and MET

  • Jin-Young, Lee (Department of Biological Sciences, Keimyung University) ;
  • Bok Yun, Kang (College of Pharmacy, Chonnam National University) ;
  • Sang-Jin, Jung (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Ah-Won, Kwak (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Seung-On, Lee (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University) ;
  • Jin Woo, Park (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Sang Hoon, Joo (College of Pharmacy, Daegu Catholic University) ;
  • Goo, Yoon (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Mee-Hyun, Lee (College of Korean Medicine, Dongshin University) ;
  • Jung-Hyun, Shim (Department of Pharmacy, College of Pharmacy, Mokpo National University)
  • Received : 2022.08.26
  • Accepted : 2022.09.06
  • Published : 2023.03.01

Abstract

Patients with non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to the tyrosine kinase inhibitor gefitinib, however, the treatment becomes less effective over time by resistance mechanism including mesenchymal-epithelial transition (MET) overexpression. A therapeutic strategy targeting MET and EGFR may be a means to overcoming resistance to gefitinib. In the present study, we found that picropodophyllotoxin (PPT), derived from the roots of Podophyllum hexandrum, inhibited both EGFR and MET in NSCLC cells. The antitumor efficacy of PPT in gefitinib-resistant NSCLC cells (HCC827GR), was confirmed by suppression of cell proliferation and anchorage-independent colony growth. In the targeting of EGFR and MET, PPT bound with EGFR and MET, ex vivo, and blocked both kinases activity. The binding sites between PPT and EGFR or MET in the computational docking model were predicted at Gly772/Met769 and Arg1086/Tyr1230 of each ATP-binding pocket, respectively. PPT treatment of HCC827GR cells increased the number of annexin V-positive and subG1 cells. PPT also caused G2/M cell-cycle arrest together with related protein regulation. The inhibition of EGFR and MET by PPT treatment led to decreases in the phosphorylation of the downstream-proteins, AKT and ERK. In addition, PPT induced reactive oxygen species (ROS) production and GRP78, CHOP, DR5, and DR4 expression, mitochondrial dysfunction, and regulated involving signal-proteins. Taken together, PPT alleviated gefitinib-resistant NSCLC cell growth and induced apoptosis by reducing EGFR and MET activity. Therefore, our results suggest that PPT can be a promising therapeutic agent for gefitinib-resistant NSCLC.

Keywords

Acknowledgement

This study was funded by the Basic Science Research Program of National Research Foundation Korea (NRF) (No. 2019R1A2C1005899) and an NRF grant funded by the Korea government (MSIT) (No. 2022R1A5A8033794).

References

  1. Akhtar, N. and Bansal, J. G. (2017) Risk factors of lung cancer in nonsmoker. Curr. Probl. Cancer 41, 328-339. https://doi.org/10.1016/j.currproblcancer.2017.07.002
  2. Brugger, W. and Thomas, M. (2012) EGFR-TKI resistant non-small cell lung cancer (NSCLC): new developments and implications for future treatment. Lung Cancer 77, 2-8. https://doi.org/10.1016/j.lungcan.2011.12.014
  3. Canel, C., Moraes, R. M., Dayan, F. E. and Ferreira, D. (2000) Podophyllotoxin. Phytochemistry 54, 115-120. https://doi.org/10.1016/S0031-9422(00)00094-7
  4. Cao, S. S. and Kaufman, R. J. (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 21, 396-413. https://doi.org/10.1089/ars.2014.5851
  5. Engelman, J. A. and Janne, P. A. (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895-2899. https://doi.org/10.1158/1078-0432.ccr-07-2248
  6. Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C. M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C. and Janne, P. A. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043. https://doi.org/10.1126/science.1141478
  7. Girnita, A., Girnita, L., del Prete, F., Bartolazzi, A., Larsson, O. and Axelson, M. (2004) Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res. 64, 236-242. https://doi.org/10.1158/0008-5472.CAN-03-2522
  8. Gordaliza, M., Garcia, P. A., del Corral, J. M., Castro, M. A. and Gomez-Zurita, M. A. (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44, 441-459. https://doi.org/10.1016/j.toxicon.2004.05.008
  9. Griffin, R. and Ramirez, R. A. (2017) Molecular targets in non-small cell lung cancer. Ochsner J. 17, 388-392.
  10. Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., Possemato, A., Nardone, J., Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S. P., Rush, J., Polakiewicz, R. D. and Comb, M. J. (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl. Acad. Sci. U. S. A. 105, 692-697. https://doi.org/10.1073/pnas.0707270105
  11. International Agency for Research on Cancer (2020) GLOBOCAN Lung Cancer Facts Sheet 2020. World Health Organization. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf/.
  12. Jackman, D., Pao, W., Riely, G. J., Engelman, J. A., Kris, M. G., Janne, P. A., Lynch, T., Johnson, B. E. and Miller, V. A. (2010) Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Clin. Oncol. 28, 357-360. https://doi.org/10.1200/JCO.2009.24.7049
  13. Johnson, M., Garassino, M. C., Mok, T. and Mitsudomi, T. (2022) Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors: focus on novel therapies. Lung Cancer 170, 41-51. https://doi.org/10.1016/j.lungcan.2022.05.011
  14. Kim, H. S., Oh, H. N., Kwak, A. W., Kim, E., Lee, M. H., Seo, J. H., Cho, S. S., Yoon, G., Chae, J. I. and Shim, J. H. (2021) Deoxypodophyllotoxin inhibits cell growth and induces apoptosis by blocking EGFR and MET in gefitinib-resistant non-small cell lung cancer. J. Microbiol. Biotechnol. 31, 559-569. https://doi.org/10.4014/jmb.2101.01029
  15. Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., Johnson, B. E., Eck, M. J., Tenen, D. G. and Halmos, B. (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786-792. https://doi.org/10.1056/NEJMoa044238
  16. Kosaka, T., Yamaki, E., Mogi, A. and Kuwano, H. (2011) Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J. Biomed. Biotechnol. 2011, 165214.
  17. Kris, M. G., Natale, R. B., Herbst, R. S., Lynch, T. J., Jr., Prager, D., Belani, C. P., Schiller, J. H., Kelly, K., Spiridonidis, H., Sandler, A., Albain, K. S., Cella, D., Wolf, M. K., Averbuch, S. D., Ochs, J. J. and Kay, A. C. (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290, 2149-2158. https://doi.org/10.1001/jama.290.16.2149
  18. Kwak, A. W., Yoon, G., Lee, M. H., Cho, S. S., Shim, J. H. and Chae, J. I. (2020) Picropodophyllotoxin, an epimer of podophyllotoxin, causes apoptosis of human esophageal squamous cell carcinoma cells through ROS-mediated JNK/P38 MAPK pathways. Int. J. Mol. Sci. 21, 4640.
  19. Lee, S. O., Kwak, A. W., Lee, M. H., Seo, J. H., Cho, S. S., Yoon, G., Chae, J. I., Joo, S. H. and Shim, J. H. (2021) Picropodophyllotoxin induces G1 cell cycle arrest and apoptosis in human colorectal cancer cells via ROS generation and activation of p38 MAPK signaling pathway. J. Microbiol. Biotechnol. 31, 1615-1623. https://doi.org/10.4014/jmb.2109.09012
  20. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  21. Miller, K. D., Nogueira, L., Devasia, T., Mariotto, A. B., Yabroff, K. R., Jemal, A., Kramer, J. and Siegel, R. L. (2022) Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 72, 409-436. https://doi.org/10.3322/caac.21731
  22. Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G. and Migliaccio, A. (2020) ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192-203. https://doi.org/10.1038/s12276-020-0384-2
  23. Puri, N. and Salgia, R. (2008) Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J. Carcinog. 7, 9.
  24. Schulze, W. X., Deng, L. and Mann, M. (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, 2005.0008.
  25. Shah, R. and Lester, J. F. (2020) Tyrosine kinase inhibitors for the treatment of EGFR mutation-positive non-small-cell lung cancer: a clash of the generations. Clin. Lung Cancer 21, e216-e228. https://doi.org/10.1016/j.cllc.2019.12.003
  26. Shah, Z., Gohar, U. F., Jamshed, I., Mushtaq, A., Mukhtar, H., Zia-Ui-Haq, M., Toma, S. I., Manea, R., Moga, M. and Popovici, B. (2021) Podophyllotoxin: history, recent advances and future prospects. Biomolecules 11, 603.
  27. Siegel, R. L., Miller, K. D., Fuchs, H. E. and Jemal, A. (2022) Cancer statistics, 2022. CA Cancer J. Clin. 72, 7-33. https://doi.org/10.3322/caac.21708
  28. Tian, X., Gu, T., Lee, M. H. and Dong, Z. (2022) Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim. Biophys. Acta Rev. Cancer 1877, 188645.
  29. Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
  30. Vasilcanu, D., Girnita, A., Girnita, L., Vasilcanu, R., Axelson, M. and Larsson, O. (2004) The cyclolignan PPP induces activation loopspecific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene 23, 7854-7862. https://doi.org/10.1038/sj.onc.1208065
  31. Zhao, W., Cong, Y., Li, H. M., Li, S., Shen, Y., Qi, Q., Zhang, Y., Li, Y. Z. and Tang, Y. J. (2021) Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat. Prod. Rep. 38, 470-488. https://doi.org/10.1039/D0NP00041H
  32. Zorov, D. B., Juhaszova, M. and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909-950. https://doi.org/10.1152/physrev.00026.2013