• 제목/요약/키워드: Protein structure prediction

검색결과 105건 처리시간 0.027초

Reviving GOR method in protein secondary structure prediction: Effective usage of evolutionary information

  • Lee, Byung-Chul;Lee, Chang-Jun;Kim, Dong-Sup
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.133-138
    • /
    • 2003
  • The prediction of protein secondary structure has been an important bioinformatics tool that is an essential component of the template-based protein tertiary structure prediction process. It has been known that the predicted secondary structure information improves both the fold recognition performance and the alignment accuracy. In this paper, we describe several novel ideas that may improve the prediction accuracy. The main idea is motivated by an observation that the protein's structural information, especially when it is combined with the evolutionary information, significantly improves the accuracy of the predicted tertiary structure. From the non-redundant set of protein structures, we derive the 'potential' parameters for the protein secondary structure prediction that contains the structural information of proteins, by following the procedure similar to the way to derive the directional information table of GOR method. Those potential parameters are combined with the frequency matrices obtained by running PSI-BLAST to construct the feature vectors that are used to train the support vector machines (SVM) to build the secondary structure classifiers. Moreover, the problem of huge model file size, which is one of the known shortcomings of SVM, is partially overcome by reducing the size of training data by filtering out the redundancy not only at the protein level but also at the feature vector level. A preliminary result measured by the average three-state prediction accuracy is encouraging.

  • PDF

Minimally Complex Problem Set for an Ab initio Protein Structure Prediction Study

  • Kim RyangGug;Choi Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권5호
    • /
    • pp.414-418
    • /
    • 2004
  • A 'minimally complex problem set' for ab initio protein Structure prediction has been proposed. As well as consisting of non-redundant and crystallographically determined high-resolution protein structures, without disulphide bonds, modified residues, unusual connectivities and heteromolecules, it is more importantly a collection of protein structures. with a high probability of being the same in the crystal form as in solution. To our knowledge, this is the first attempt at this kind of dataset. Considering the lattice constraint in crystals, and the possible flexibility in solution of crystallographically determined protein structures, our dataset is thought to be the safest starting points for an ab initio protein structure prediction study.

Protein Disorder Prediction Using Multilayer Perceptrons

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제9권4호
    • /
    • pp.11-15
    • /
    • 2013
  • "Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.

Genome Scale Protein Secondary Structure Prediction Using a Data Distribution on a Grid Computing

  • Cho, Min-Kyu;Lee, Soojin;Jung, Jin-Won;Kim, Jai-Hoon;Lee, Weontae
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.65-65
    • /
    • 2003
  • After many genome projects, algorithms and software to process explosively growing biological information have been developed. To process huge amount of biological information, high performance computing equipments are essential. If we use the remote resources such as computing power, storages etc., through a Grid to share the resources in the Internet environment, we will be able to obtain great efficiency to process data at a low cost. Here we present the performance improvement of the protein secondary structure prediction (PSIPred) by using the Grid platform, distributing protein sequence data on the Grid where each computer node analyzes its own part of protein sequence data to speed up the structure prediction. On the Grid, genome scale secondary structure prediction for Mycoplasma genitalium, Escherichia coli, Helicobacter pylori, Saccharomyces cerevisiae and Caenorhabditis slogans were performed and analyzed by a statistical way to show the protein structural deviation and comparison between the genomes. Experimental results show that the Grid is a viable platform to speed up the protein structure prediction and from the predicted structures.

  • PDF

USING AN ABSTRACTION OF AMINO ACID TYPES TO IMPROVE THE QUALITY OF STATISTICAL POTENTIALS FOR PROTEIN STRUCTURE PREDICTION

  • Lee, Jin-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권3호
    • /
    • pp.191-199
    • /
    • 2011
  • In this paper, we adopt a position specific scoring matrix as an abstraction of amino acid type to derive two new statistical potentials for protein structure prediction, and investigated its effect on the quality of the potentials compared to that derived using residue specific amino acid identity. For stringent test of the potential quality, we carried out folding simulations of 91 residue A chain of protein 2gpi, and found unexpectedly that the abstract amino acid type improved the quality of the one-body type statistical potential, but not for the two-body type statistical potential which describes long range interactions. This observation could be effectively used when one develops more accurate potentials for structure prediction, which are usually involved in merging various one-body and many-body potentials.

Bioinformatic approaches for the structure and function of membrane proteins

  • Nam, Hyun-Jun;Jeon, Jou-Hyun;Kim, Sang-Uk
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.697-704
    • /
    • 2009
  • Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.

The Grammatical Structure of Protein Sequences

  • Bystroff, Chris
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.28-31
    • /
    • 2000
  • We describe a hidden Markov model, HMMTIR, for general protein sequence based on the I-sites library of sequence-structure motifs. Unlike the linear HMMs used to model individual protein families, HMMSTR has a highly branched topology and captures recurrent local features of protein sequences and structures that transcend protein family boundaries. The model extends the I-sites library by describing the adjacencies of different sequence-structure motifs as observed in the database, and achieves a great reduction in parameters by representing overlapping motifs in a much more compact form. The HMM attributes a considerably higher probability to coding sequence than does an equivalent dipeptide model, predicts secondary structure with an accuracy of 74.6% and backbone torsion angles better than any previously reported method, and predicts the structural context of beta strands and turns with an accuracy that should be useful for tertiary structure prediction. HMMSTR has been incorporated into a public, fully-automated protein structure prediction server.

  • PDF

최적설계 기법을 이용한 단백질 3차원 구조 예측 (Prediction of Protein Tertiary Structure Based on Optimization Design)

  • 정민중;이준성
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.841-848
    • /
    • 2006
  • Many researchers are developing computational prediction methods for protein tertiary structures to get much more information of protein. These methods are very attractive on the aspects of breaking technologies of computer hardware and simulation software. One of the computational methods for the prediction is a fragment assembly method which shows good ab initio predictions at several cases. There are many barriers, however, in conventional fragment assembly methods. Argues on protein energy functions and global optimization to predict the structures are in progress fer example. In this study, a new prediction method for protein structures is proposed. The proposed method mainly consists of two parts. The first one is a fragment assembly which uses very shot fragments of representative proteins and produces a prototype of a given sequence query of amino acids. The second one is a global optimization which folds the prototype and makes the only protein structure. The goodness of the proposed method is shown through numerical experiments.

Protein Tertiary Structure Prediction Method based on Fragment Assembly

  • Lee, Julian;Kim, Seung-Yeon;Joo, Kee-Hyoung;Kim, Il-Soo;Lee, Joo-Young
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.250-261
    • /
    • 2004
  • A novel method for ab initio prediction of protein tertiary structures, PROFESY (PROFile Enumerating SYstem), is introduced. This method utilizes secondary structure prediction information and fragment assembly. The secondary structure prediction of proteins is performed with the PREDICT method which uses PSI-BLAST to generate profiles and a distance measure in the pattern space. In order to predict the tertiary structure of a protein sequence, we assemble fragments in the fragment library constructed as a byproduct of PREDICT. The tertiary structure is obtained by minimizing the potential energy using the conformational space annealing method which enables one to sample diverse low lying minima of the energy function. We apply PROFESY for prediction of some proteins with known structures, which shows good performances. We also participated in CASP5 and applied PROFESY to new fold targets for blind predictions. The results were quite promising, despite the fact that PROFESY was in its early stage of development. In particular, the PROFESY result is the best for the hardest target T0161.

  • PDF