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ABSTRACT. In this paper, we adopt a position specific scoring matrix as an abstraction of
amino acid type to derive two new statistical potentials for protein structure prediction, and
investigated its effect on the quality of the potentials compared to that derived using residue
specific amino acid identity. For stringent test of the potential quality, we carried out folding
simulations of 91 residue A chain of protein 2gpi, and found unexpectedly that the abstract
amino acid type improved the quality of the one-body type statistical potential, but not for the
two-body type statistical potential which describes long range interactions. This observation
could be effectively used when one develops more accurate potentials for structure prediction,
which are usually involved in merging various one-body and many-body potentials.

1. INTRODUCTION

Ab-initio protein structure prediction is a famous unsolved problem in the computational
sciences, and it is one of the biggest bottle necks in simulating biomolecules in silico [1]. the
framework of every protein structure prediction procedure is based on the Afinsen’s paradigm
[2]; a protein’s native state is the minimum free energy state. One defines a potential function,
and explores the conformational space using a global optimization method.

Statistical potentials used for the protein structure prediction are called potentials of mean
force, and describe favorable, or unfavorable interactions between residue specific atom types.
It is well known that they are effective in selecting near native structures among many well-
formed proteins like decoy configurations, and thus are widely used in the prediction commu-
nity of protein structures as a component for quality assessment of generated protein models
[3, 4, 5].

Most statistical potentials use residue specific atom types (see [6] and references therein.)
However, even distinct amino acids could share similar structural preferences. It can be seen
in that protein members in the same family are structurally well conserved even though some
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of their amino acids are mutated. This feature is well represented by a position specific substi-
tution matrix (PSSM) of protein families [7], and it is an essential ingredient in every structure
prediction procedure.

Since the matrix elements are more effective to describe the local environment of a residue
compared to the residue atom identity, it would be feasible that they could be used instead of
concrete atom types in the statistical potentials. Thus, we introduce PSSM as an abstraction of
amino acid types, and tested the effect of replacing concrete atom types by PSSM.

For the test, we constructed new one-body and two-body statistical potentials named ”profile
contact potentials” since they describe favorable, or unfavorable interactions between abstract
profile columns. The accuracy of any potential functions could be stringently judged by struc-
ture prediction test, so we investigated the effect by carrying out folding simulations of A chain
of a protein 2gpi which is an alpha-beta protein with 91 residues.

Unexpectedly, the effect of the replacement was not uniform to the functional types that we
used. The quality of the one-body potential which describes a local character of a given residue
was improved, but not for the two-body potential which describes a rather global character of
a protein shape.

2. TWO NEW STATISTICAL POTENTIALS FOR PROFILE CONTACT

In this work, protein backbones are represented by heavy atoms, N, Cα, C, and O positions
and side-chains are by side-chain centers (SC). Local backbone configurations and amino acid
type determines the position of each side-chain center [8]. We included backbone heavy atoms
in order to consider the excluded volume effect correctly. Side-chain center positions play an
import role to define potential functions of this work.

2.1. Abstract amino acid type. Most statistical potentials use residue specific atomic types
such as alpha carbon of alanine, and beta carbon of lysine. However, it well known that even
distinct amino acids could share similar structural preferences. For example, protein mem-
bers in the same family are structurally conserved even though some of their amino acids are
mutated.

A position specific substitution matrix (PSSM) [7] provides numerical values for a tendency
of mutation of amino acids in structurally conserved protein families. It would be feasible to
use the matrix as an abstraction of amino acid types. And thus unlike other statistical potentials,
we decided to use 1 column of PSSM as an abstract representation of amino acid types ai, and
regarded as ai = aj if cos−1 (ai,aj)

∥ai∥∥aj∥ < π
6 , where (·, ·) is the dot-product of the column vectors,

and ∥ · ∥ is the norm of it.

2.2. One-body, local environment potential. A driving force for forming a tertiary structure
(a global shape) of a protein is known as hydrophobic interaction [9] on which we lack a
sufficient quantitative knowledge, and thus is deserved the term ’unsolved’. By that interaction,
aquaphobia residues are buried inside the protein, and hydrophilic residues are exposed to
solvent.
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In [10], Hamelryck proposed a new solvent exposure measure called half-sphere exposure
(HSE) which counts the number of Cα atoms within a half sphere which contains a vector from
Cα to Cβ and centered at a given Cα atom. Since proteins have two sides, buried and exposed,
their idea is quite reasonable. A new one body potential in this paper is a direct conversion of
their idea in the form of a statistical potential with a slight modification.

Let S(x) be the area surrounded by the sphere of radius 11Å centered at x and the upper
part of the plane normal to the vector from x to its side-chain center. Let N(x) be the number
of side-chain centers within S(x).

We define the one-body score S1
(·)(X|A) for a given protein model X with the amino acid

sequence A as follows:

S1
(·)(X|A) = −

m∑
i=1

P1(N(xi)|ai) (2.1)

where m is the number of residues of X , xi is the Cα position of i-th residue, and P1(·|ai) is
the pre-calculated conditional probability distribution over N(·).

To estimate P1(·|ai), we used 5717 representative protein structures with less than 25%
sequence identity from PISCES server [11], and the following formula:

P 1(n|ai) =
∑5717

k=1

∑mk
i=1 δ([N(xki )/2], [n/2])δ(a

k
i , ai)∑5717

k=1

∑mk
i=1 δ(a

k
i , ai)

(2.2)

where xki and aki are the location and the (abstract) amino acid type of the i-th residue of the
k-th protein in the database, respectively, and mk is the number of residues of the k-th protein.
δ(p, q) = 1 if p = q, otherwise it is 0. [x] is the greatest integer which is less than or equal
to x. Let us denote (2.1) plus an excluded volume term taken from [12] with a sufficient large
coefficient as S1

atom(X|A) if it is defined using residue specific atom identity. If a profile
column is used as an abstract amino acid type, let us denote by S1

profile(X|A).
In short, (2.2) is just the probability for a specific residue type ai to have n neighboring side-

chain center atoms within the half-sphere in the experimental protein structures. For example,
hydrophobic residues which are usually buried may have high n values with high probability
compared to hydrophilic residues. (2.1) assigns a lower value to a model structure in which the
distribution of aquaphobia and hydrophilic residues consistently follows the tendency of the
known structures.

2.3. Two-body potential. We define two body profile potential S2
(·)(X|A) which is distance

dependent for a given protein model X with the amino acid sequence A as follows:

S2
(·)(X|A) = −

m−3∑
i=1

m∑
j=i+3

P2(rij |ai, aj), (2.3)

where m is the number of residues of X , and rij is the distance between corresponding side-
chain centers of (abstract) amino acid pairs ai, aj . P2(·|ai, aj) is the pre-calculated condi-
tional probability distribution over pair-wise distances for side-chain centers of amino acid
pairs ai, aj .
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To estimate P2(·|ai, aj), we used the same database as the one-body case, and the following
formula:

P2(rij |ai, aj) =
∑5717

k=1

∑mk

i,j=1(i+1<j) δ([r
k
ij ], [rij ])δ(a

k
i , ai)δ(a

k
j , aj)∑5717

k=1

∑mk

i,j=1(i+1<j) δ(a
k
i , ai)δ(a

k
j , aj)

(2.4)

where aki , a
k
j and rkij are the (abstract) amino acid pairs of the i-th and j-th residues of the k-th

protein in the database, and the distance between their corresponding side-chain center atoms,
respectively. mk is the number of residues of the k-th protein in the database. δ(p, q) = 1 if
p = q, otherwise it is 0. [x] is the greatest integer which is less than or equal to x. Let us
denote (2.3) plus excluded volume term taken from [12] with a sufficient large coefficient as
S2
atom(X|A) if it is defined using residue specific atom identity. If a profile column is used as

an abstract amino acid type, let us denote by S2
profile(X|A).

In short, (2.4) is just the probability for the corresponding side-chain centers of a specific
residue pairs ai, aj to be in the distance rij in known protein structures. For example, hy-
drophobic residue pairs could have low rij values with high probability since if they are both
buried, they would be in contact with each other. (2.3) assigns a lower value to a model struc-
ture in which the distribution of the distances between amino acid pairs consistently follows
the tendency of the known structures.

3. NUMERICAL SIMULATION

Local structures were sampled from the fragment library generated by Rosetta [12], and
the assembly of them is guided by the proposed statistical potentials in Section 2. The scores
contain the excluded volume term used in Rosetta with a high weight coefficient so that any
overlap between heavy atoms is prohibited.

Most successful methods for protein structure prediction such as I-tasser, and Rosetta take
the form of fragment assembly [8, 12]. By using well formed fragment from a protein database
for local structures, the degrees of freedom to be searched is significantly reduced. Moreover,
interactions that act to form the local structures need not to be considered explicitly. And thus
we can concentrate solely on global interactions that are responsible for forming the tertiary
structures.

For exploring the energy landscape, a variation of genetic algorithm called conformational
space annealing (CSA) [13] is adopted. CSA is one of the most powerful global optimization
methods that has been applied to generate favorable configurations in many systems, including
protein AB models [14, 15], multiple sequence alignment [16], and template based modeling
[17], just a few mentioned.

The overall procedure with specific parameters of CSA for this work is as follows. Initially,
50 random configurations are generated and subsequently energy minimized. For the energy
minimization, we replace a part (selected in a random fashion) of a model protein A by a
fragment from the fragment library for the corresponding region, and accept the new model if
it is lower in score than that of A. We try this fragment replacement procedures 1000 times.
We call the pool of 50 initial configurations as the first bank.
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(A) S1
atom(X|A) (B) S1

profile(X|A)

FIGURE 1. The energy landscapes of the one-body potentials (A) with residue
specific atom identities, and (B) with new abstract atom types are shown.

The first bank conformations are copied to bank, and they are evolved iteratively as follows.
Distant 20 unused seed configurations are randomly selected. 15 trial conformations for each
seed and thus 20∗15 = 300 in total is formed by replacing a consecutive part (up to 40% of the
chain length) selected in a random fashion of each seed by the corresponding part of another
bank conformation (also selected in a random fashion), and subsequently energy minimized as
above. They are utilized for bank updating procedure.

Each trial conformation A is compared with the closest one α in the bank in terms of root
mean square deviation (RMSD). If they are similar, A is taken if it is lower than α in energy,
and set the seed status as unused. In the case that they are dissimilar, A is compared to the one
β with the highest energy in the bank, and A is taken if it is lower in energy than β, and set the
seed status as unused. Otherwise A is rejected. In this way, the number of bank conformations
is fixed to 50.

If RMSD value between two conformations is less than Dcut they are regarded as similar.
Dcut is set initially to half of the average distance Dave of the first bank conformations, and

it is reduced by a factor of 2
5

1
166 at the end of every iteration step. Dcut value is fixed to Dave

5
after 166 iteration steps. This completes one iteration, and we repeat. The CSA procedure
stops automatically if there is no unused seed.

Since the CSA is a stochastic process, we carried out 10 independent runs with different
random numbers for each case of the study (see section 4). We note that it took about 20
minutes using 80 cores of 2.40 GHz Intel Xeon processors for 10 independent runs.

4. RESULTS

4.1. Effect on one-body potential. Figures 1a and 1b show the energy landscapes of S1
atom(X|A),

and S1
profile(X|A), respectively. The Y-axis is the energy value of S1

(·)(X|A) and X-axis is a
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(A) S1
atom(X|A) (B) S1

profile(X|A)

FIGURE 2. The lowest energy models (magenta) generated using (A)
S1
atom(X|A) and (B) S1

profile(X|A), respectively, superposed with the native
structure (silver) are shown. More kinked alpha helix in the left panel is well
adjusted to the native in the right panel.

value for similarity between the generated protein model and the native structure called TM-
score. TM-score is between 0 and 1, and 1 for the perfect match of two structures.

In each figure, we observe that first bank conformations with high energies are evolved to
form the final bank conformations with low energies. Our analysis is focused on the overall
shape of low energy regions. When we use residue specific atom identities (S1

atom(X|A)), the
lowest energy regions are found between 0.25 and 0.35 as shown in Figure 1a. On the other
hand, if profile columns are used as abstract amino acid types, the lowest energy regions are
shifted to the right and are found between 0.4 and 0.45 as shown in Figure 1b. Moreover,
the overall shape of the energy landscape of S1

profile(X|A) is more funnel shaped than that of
S1
atom(X|A), i.e., even though there is a very narrow low energy region between 0.2 and 0.25

in Figure 1b, it is roughly observed that the quality of models is improved as their energy is
lowered.

The lowest energy model (magenta) of each case superimposed with the native structure
(silver) is shown in Figures 3a and 3b. In the left panel, more kinked alpha helix in front
generated using S1

atom(X|A) is well adjusted to the native structure as shown in the right panel
by using S1

profile(X|A). Further structural comparison data is shown as below.

Search Score TM-score Matched Length Matched RMSD
S1
atom(X|A) 0.3054 35 2.98

S1
profile(X|A) 0.4191 53 2.80
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(A) S2
atom(X|A) (B) S2

profile(X|A)

FIGURE 3. The energy landscapes of the two-body potentials (A) with residue
specific atom identities and (B) with new abstract atom types are shown.

By using S1
profile(X|A), 58 % of the whole chain is correctly modeled with RMSD of that

matched region being 2.80. Well matched region is much extended compared to 38% of the
S1
atom(X|A) case.

4.2. Effect on two-body potential. Figures 3a and 3b show the energy landscapes of S2
atom(X|A),

and S2
profile(X|A), respectively. Using residue specific atom identity for S2

atom(X|A), the
lowest energy region is formed between 0.35 and 0.45. On the other hand, it is formed between
0.3 and 0.35 using abstract profile atom types. More detailed comparison of the lowest energy
model of each case to the native structure is shown as below.

Score TM-score Matched Length Matched RMSD
S2
atom(X|A) 0.3668 35 1.94

S2
profile(X|A) 0.3086 33 2.61

The aligned length of the lowest energy model of S2
atom(X|A) is 38 % of the whole chain

with RMSD of the matched region being 1.94, which is slightly better than the case of S2
profile(X|A)

with corresponding values 36 % and 2.61, respectively. Overall, it seems to be better to use
residue specific atomic identity for two-body potentials than to use profile columns, although
the difference is marginal.

5. DISCUSSION

We derived two new statistical potentials for protein folding from a protein structure data-
base. One-body potential is obtained by calculating the probabilities for a specific residue type
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to have n neighboring side-chain center atoms within the half-sphere in the experimental pro-
tein structures. The half-sphere is centered at Cα atom of ai and containing the vector from Cα

to side-chain center of it. Two-body potential is obtained by calculating the probabilities for
the corresponding side-chain centers of specific residue pairs to be in a distance bin in known
protein structures.

In the derivation of the potentials, we used both residue specific atomic identity and profile
columns as an abstract amino acid type, and revealed its influence on the quality of statistical
potentials by performing folding simulations of 91 residue long A chain of protein 2gpi. We
found that profile columns used in the one-body potential improved the quality of the potential
much compared to the case of using atomic identity. On the other hand, for two-body potentials,
it was better to use atomic identity, although the difference is marginal.

The position specific substitution matrices (PSSM) are successfully applied for protein sec-
ondary structure prediction [18]. This work is an attempt to use PSSM to predict tertiary
structures. Since PSSM is an effective abstraction for an environment of an amino acid, it is
understandable it improves the quality of one-body statistical potential, which describes prefer-
able local environment. However, it did not improve the quality of two-body potential. It means
that the residue specific atomic identity itself is more influencing factor for the long range in-
teractions than the local environment of a position. In other words, the long range interaction
between two spots having environment types A and B was not preserved among various pro-
tein structures. This observation could be effectively used when one develops more accurate
potentials for structure prediction, which are usually involved in merging various one-body and
many-body potentials.
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