• Title/Summary/Keyword: Protein pretreatment

Search Result 526, Processing Time 0.025 seconds

Dyeing Properties of Bacterial Cellulose Fabric using Gardenia Jasminoides, Green Tea, and Pomegranate Peel, and the Effects of Protein Pretreatment (치자, 녹차, 석류껍질을 활용한 박테리아 셀룰로오스 섬유소재의 염색성과 단백질 전처리의 영향)

  • Yerim Hwang;Hyunjin Kim;Hye Rim Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.511-527
    • /
    • 2024
  • The aim of this study was to impart color to bacterial cellulose (BC) fabric using various natural plant-based dyes-namely, gardenia jasminoides, green tea, and pomegranate peel. A protein pretreatment was also applied to improve the BC fabric's dyeability and mechanical properties. The BC fabric's dyeing and mordanting conditions when using plant-based natural dyes were determined by changes in the K/S values. The dyeability of BC samples dyed with green tea or pomegranate peel improved when they were pretreated with soy protein isolate (SPI) prior to dyeing. Moreover, the SPI pretreatment was efficient in improving the BC fabric's tensile strength and flexibility. This study proposes a method for dyeing BC fabric that uses plant-based natural dyes and confirms the effects of the protein pretreatment on the fabric's dyeability and durability.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

Opening of ATP-sensitive $K^+$ Channel by Pinacidil Requires Serine/Threonine Phosphorylation in Rat Ventricular Myocytes

  • Kwak, Yong-Geun;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.293-303
    • /
    • 1999
  • The influences of specific protein phosphatase and protein kinase inhibitors on the ATP-sensitive $K^+\;(K_{ATP})$ channel-opening effect of pinacidil were investigated in single rat ventricular myocytes using patch clamp technique. In cell-attached patches, pinacidil $(100\;{\mu}M)$ induced the opening of the $K_{ATP}$ channel, which was blocked by the pretreatment with H-7 $(100\;{\mu}M)$ whereas enhanced by the pretreatment with genistein $(30\;{\mu}M)$ or tyrphostin A23 $(10\;{\mu}M)$. In inside-out patches, pinacidil $(10\;{\mu}M)$ activated the $K_{ATP}$ channels in the presence of ATP (0.3 mM) or AMP-PNP (0.3 mM) and in a partial rundown state. The effect of pinacidil $(10\;{\mu}M)$ was not affected by the pretreatment with protein tyrosine phosphatase 1B $(PTP1B,\;10\;{\mu}g\;ml^{-1}),$ but blocked by the pretreatment of protein phosphatase 2A $(PP2A,\;1\;U\;ml^{-1})$. In addition, pinacidil $(10\;{\mu}M)$ could not induce the opening of the reactivated $K_{ATP}$ channels in the presence of H-7 $(100\;{\mu}M)$ but enhanced it in the presence of ATP (1 mM) and genistein $(30\;{\mu}M).$ These results indicate that the $K_{ATP}$ channel-opening effect of pinacidil is not mediated via phosphorylation of $K_{ATP}$ channel protein or associated protein, although it still requires the phosphorylation of serine/threonine residues as a prerequisite condition.

  • PDF

Effect of Phenobarbital on the Nonlinear Pharmacokinetics of Naproxen (나프록센의 비선형 체내동태에 미치는 페노바르비탈의 영향)

  • Lee, Yong-Bok;Chae, Myung-Ae;Koh, Ik-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.109-117
    • /
    • 1997
  • In order to elucidate the effect of phenobarbital (PB) on the nonlinear pharmacokinetic behavior of naproxen (NAP), we compared the dose dependent hepatic intrinsic clearance, biliary excretion and protein binding of NAP in control rats to those in the PB-pretreated rats which were intraperitoneally pretreated with PB sodium (75 mg/kg) once a day for four days. NAP was injected via femoral (1.5 mg/kg) and portal(0.25, 0.5, 1.5, 15 and 30 mg/kg) vein to the control and PB-pretreated rats, respectively. And also, we measured the plasma free fraction of NAP with the equilibrium dialysis method and the biliary excreted total amounts of NAP in both rats. Plasma free fraction of NAP was decreased in lower concentration than $150\;{\mu}g/ml$ of NAP due to PB pretreatment. In higher concentration, however, plasma free fraction was increased. These in vitro results suggest that the total protein concentration was increased but the total binding capacity of NAP to protein was decreased by PB-pretreatment. The total plasma clearance and the hepatic intrinsic clearance of NAP had similar values in both groups, respectively. And, both clearances of NAP were significantly increased by PB-pretreatment. Even though the plasma free fractions of NAP in both groups were constantly remained within the concentration range according to the increase of administration dose, the hepatic intrinsic clearances of NAP were significantly increased in both groups with the increased dose. And, the biliary excreted total amounts of NAP were significantly increased by PB-pretreatment at the lower dose, but decreased at the higher dose. These in vivo results suggest that NAP represents the uncommon nonlinear pharmacokinetic behavior that the hepatic intrinsic clearance was enhanced with the increased dose, and that PB enhances further the hepatic intrinsic clearance of NAP with the increased dose due to its enzyme induction effect.

  • PDF

Effect of Carbon Tetrachloride on the Changes of Guanase Activity in-Rats Fed Low or High Proteins Diet (食餌性 蛋白質含量에 따른 흰쥐에 사염화탄소 投與가 Guanase 活性變動에 미치는 영향)

  • Kang, Hoe-Yang
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.87-101
    • /
    • 1988
  • The effect of hepatic injury produced by CCL, was studied on rats receiving a low protein-high carbohydrate (7% casein), standard protein (20% casein) and a high protein diet (30% casein). The rats fed low protein diet are resistant to CCl$_4$ in its effects on the liver as judged by histology, serum enzymes(guanase, ALT) and the content of hepatic protein. On the other hand, the pretreatment of hydrocortisone before injection of CCl$_4$ to the rats fed a standard diet, slightly decreased both serum ALT and guanase activities. In the pretreatment of actinomycin D, the liver and serum guanase activities were significantly decreased. It indicates that the cause of increasing serum guanase is based on the alteration of membrane permeability and the result of accelerated enzyme synthesis in liver cells of CCl$_4$ intoxicated rats.

  • PDF

Prognostic Value of C-Reactive Protein in Esophageal Cancer: a Meta-analysis

  • Zheng, Tian-Liang;Cao, Ke;Liang, Cui;Zhang, Kai;Guo, Hai-Zhou;Li, De-Ping;Zhao, Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8075-8081
    • /
    • 2014
  • Background: The classical inflammatory biomarker, C-reactive protein (CRP), has been identified to be related to progression of esophageal cancer. Some research showed that elevated pretreatment serum CRP indicated a poor prognosis, but results have been inconsistent. Materials and Methods: We searched the Medline, Embase and the Cochrane Central Search Library for suitable studies and a meta-analysis of eleven (1,886 patients) was conducted to examine the relationship between elevated serum CRP level and overall survival (OS) in esophageal cancer cases. Moreover, correlation analyses were conducted to assess links between pretreatment serum CRP level and tumor node metastasis (TNM) stage as well as T, N, M grade, respectively. Results: The pooled analysis showed that elevated pretreatment serum CRP level was significantly associated with poorer overall survival (HR 2.09, 95%CI 1.52-2.87, p<0.01). Subgroup analyses were conducted by "country", "cut-off value", "treatment" and "number of patients", and no single factor could alter the result. Elevated pretreatment serum CRP was significantly correlated with more advanced TNM stage and T, N, M grade respectively. Conclusions: Elevated pretreatment serum CRP levels are associated with poorer prognosis in esophageal cancer patients, and could serve as a useful biomarker for outcome prediction.

Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells

  • Kim, Ji Yong;Lee, Jai-Sung;Han, Yong-Seok;Lee, Jun Hee;Bae, Inhyu;Yoon, Yeo Min;Kwon, Sang Mo;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.517-524
    • /
    • 2015
  • Human mesenchymal stem cells (MSCs) have been used in cell-based therapy to promote revascularization after peripheral or myocardial ischemia. High levels of reactive oxygen species (ROS) are involved in the senescence and apoptosis of MSCs, causing defective neovascularization. Here, we examined the effect of the natural antioxidant lycopene on oxidative stress-induced apoptosis in MSCs. Although $H_2O_2$ ($200{\mu}M$) increased intracellular ROS levels in human MSCs, lycopene ($10{\mu}M$) pretreatment suppressed $H_2O_2$-induced ROS generation and increased survival. $H_2O_2$-induced ROS increased the levels of phosphorylated p38 mitogen activated protein kinase (MAPK), Jun-N-terminal kinase (JNK), ataxia telangiectasia mutated (ATM), and p53, which were inhibited by lycopene pretreatment. Furthermore, lycopene pretreatment decreased the expression of cleaved poly (ADP ribose) polymerase-1 (PARP-1) and caspase-3 and increased the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), which were induced by $H_2O_2$ treatment. Moreover, lycopene significantly increased manganese superoxide dismutase (MnSOD) expression and decreased cellular ROS levels via the PI3K-Akt pathway. Our findings show that lycopene pretreatment prevents ischemic injury by suppressing apoptosis-associated signal pathway and enhancing anti-oxidant protein, suggesting that lycopene could be developed as a beneficial broad-spectrum agent for the successful MSC transplantation in ischemic diseases.

Effect of Antibiotics upon the Antibacterial Activity of Platelet Microbicidal Protein against Streptococcus rattus BHT

  • Kim, Jae-Wook;Choe, Son-Jin;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • Thrombin-induced platelet microbicidal protein (tPMP) is a small cationic peptide that exerts potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus and Streptococcus rattus BHT. Earlier evidence has suggested that tPMP targets and disrupts the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacteria or whether subsequent, presumably intracellular, events are also involved in this process. In this study, we investigated the microbicidal activity of rabbit tPMP toward S. rattus BHT cells in the presence or absence of a pretreatment with antibiotics that differ in their mechanisms of action. The streptocidal effects of tPMP on control cells (no antibiotic pretreatment) were rapid and concentration-dependent. Pretreatment of S. rattus BHT cells with either penicillin or amoxicillin (inhibitors of bacterial cell wall synthesis) significantly enhanced the anti-S. rattus BHT effects of tPMP compared with the effects against the respective control cells over most tPMP concentration ranges tested. On the other hand, pretreatment of S. rattus BHT cells with tetracycline or doxycycline (30S ribosomal subunit inhibitors) significantly decreased the streptocidal effects of tPMP over a wide peptide concentration range. Furthermore, pretreatment with rifampin (an inhibitor of DNA-dependent RNA polymerase) essentially blocked the killing of S. rattus BHT by tPMP at most concentrations compared with the respective control cells. These results suggest that tPMP exerts anti-S. rattus BHT activity through mechanisms involving both the cell membrane and intracellular targets.

Curcumin protects against the intestinal ischemia-reperfusion injury: involvement of the tight junction protein ZO-1 and TNF-α related mechanism

  • Tian, Shuying;Guo, Ruixue;Wei, Sichen;Kong, Yu;Wei, Xinliang;Wang, Weiwei;Shi, Xiaomeng;Jiang, Hongyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • Present study aimed to investigate the effect of curcumin-pretreatment on intestinal I/R injury and on intestinal mucosa barrier. Thirty Wistar rats were randomly divided into: sham, I/R, and curcumin groups (n=10). Animals in curcumin group were pretreated with curcumin by gastric gavage (200 mg/kg) for 2 days before I/R. Small intestine tissues were prepared for Haematoxylin & Eosin (H&E) staining. Serum diamine oxidase (DAO) and tumor necrosis factor (TNF)-${\alpha}$ levels were measured. Expression of intestinal TNF-${\alpha}$ and tight junction protein (ZO-1) proteins was detected by Western blot and/or immunohistochemistry. Serum DAO level and serum and intestinal TNF-${\alpha}$ leves were significantly increased after I/R, and the values were markedly reduced by curcumin pretreatment although still higher than that of sham group (p<0.05 or p<0.001). H&E staining showed the significant injury to intestinal mucosa following I/R, and curcumin pretreatment significantly improved the histological structure of intestinal mucosa. I/R insult also induced significantly down-regulated expression of ZO-1, and the effect was dramatically attenuated by curcumin-pretreatment. Curcumin may protect the intestine from I/R injury through restoration of the epithelial structure, promotion of the recovery of intestinal permeability, as well as enhancement of ZO-1 protein expression, and this effect may be partly attributed to the TNF-${\alpha}$ related pathway.

The Effects of Pretreatment with Carbon Tetrachloride on the Absorption and Excretion of Sulfisoxazole (사염화탄소(四鹽化炭素) 간장장해(肝臟障害) 동물(動物)에서의 Sulfisoxazole의 흡수(吸收)와 배설(排泄)에 관(關)한 연구(硏究))

  • Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.2
    • /
    • pp.88-94
    • /
    • 1976
  • This paper attempted to investigate the effect of pretreatment with carbon tetrachloride on absorption, excretion, protein binding, and biological half-life of sulfisoxazol from rats and rabbits. Absorption of sulfisoxazol was found to decrease in severe damage rats, compared with that of normal rats, but in mild rats, absorption of sulfisoxazol was similar to that of nomal rats. Absorption of sulfisoxazol was decreased significantly in severe damage rabbit pretreated with carbon tetrachloride but in mild damage rabbit, absorption of sulfisoxazol was not influenced significantly. Pretreatment with carbon tetrachloride gave the effect on clearance of sulfisoxazol in part but protein binding percent of sulfisoxazol was not influenced by concentration of carbon tetrachloride.

  • PDF