• Title/Summary/Keyword: Protein kinases

Search Result 730, Processing Time 0.028 seconds

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.

Tumor Promoting Function of DUSP10 in Non-Small Cell Lung Cancer Is Associated With Tumor-Promoting Cytokines

  • Xing Wei;Chin Wen Png;Madhushanee Weerasooriya;Heng Li;Chenchen Zhu;Guiping Chen;Chuan Xu;Yongliang Zhang;Xiaohong Xu
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.34.1-34.15
    • /
    • 2023
  • Lung cancer, particularly non-small cell lung cancer (NSCLC) which contributes more than 80% to totally lung cancer cases, remains the leading cause of cancer death and the 5-year survival is less than 20%. Continuous understanding on the mechanisms underlying the pathogenesis of this disease and identification of biomarkers for therapeutic application and response to treatment will help to improve patient survival. Here we found that a molecule known as DUSP10 (also known as MAPK phosphatase 5) is oncogenic in NSCLC. Overexpression of DUSP10 in NSCLC cells resulted in reduced activation of ERK and JNK, but increased activation of p38, which was associated with increased cellular growth and migration. When inoculated in immunodeficient mice, the DUSP10-overexpression NSCLC cells formed larger tumors compared to control cells. The increased growth of DUSP10-overexpression NSCLC cells was associated with increased expression of tumor-promoting cytokines including IL-6 and TGFβ. Importantly, higher DUSP10 expression was associated with poorer prognosis of NSCLC patients. Therefore, DUSP10 could severe as a biomarker for NSCLC prognosis and could be a target for development of therapeutic method for lung cancer treatment.

The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

  • Jun Ho Lee;Tae-Jin Kim;Jie Wan Kim;Jeong Seon Yoon;Hyuk Soon Kim;Kyung-Mi Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.242-248
    • /
    • 2016
  • Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis.

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Antoine Bouchard;Mariko Witalis;Jinsam Chang;Vincent Panneton;Joanna Li;Yasser Bouklouch;Woong-Kyung Suh
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.36.1-36.13
    • /
    • 2020
  • Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

Structure-Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor

  • Shujie Wang;Xinru Tian;Suresh Paudel;Sungho Ghil;Choon-Gon Jang;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.442-450
    • /
    • 2024
  • The type-1 cannabinoid receptor (CB1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure-activity relationships (SARs) for CB1R ligands. In this study, CB1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB1R, which can be used to control psychiatric disorders and drug abuse.

Fusobacterium nucleatum infection induces CSF3 expression through p38 MAPK and JNK signaling pathways in oral squamous cell carcinoma cells

  • Ahyoung Jo;Jung-Min Oh
    • International Journal of Oral Biology
    • /
    • v.49 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Oral bacterial infections substantially affect the development of various periodontal diseases and oral cancers. However, the molecular mechanisms underlying the association between Fusobacterium nucleatum (F. nucleatum ), a major periodontitis (PT)-associated pathogen, and these diseases require extensive research. Previously, our RNA-sequencing analysis identified a few hundred differentially expressed genes in patients with PT and peri-implantitis (PI) than in healthy controls. Thus, in the present study using oral squamous cell carcinoma (OSCC) cells, we aimed to evaluate the effect of F. nucleatum infection on genes that are differentially regulated in patients with PT and PI. Human oral squamous cell carcinoma cell lines OSC-2O, HSC-4, and HN22 were used. These cells were infected with F. nucleatum at a multiplicity of infection of 100 for 3 hours at 37℃ in 5% CO2. Gene expression was then measured using reverse-transcription polymerase chain reaction. Among 18 genes tested, the expression of CSF3, an inflammation-related cytokine, was increased by F. nucleatum infection. Additionally, F. nucleatum infection increased the phosphorylation of AKT, p38 MAPK, and JNK in OSC-20 cells. Treatment with p38 MAPK (SB202190) and JNK (SP600125) inhibitors reduced the enhanced CSF3 expression induced by F. nucleatum infection. Overall, this study demonstrated that F. nucleatum promotes CSF3 expression in OSCC cells through p38 MAPK and JNK signaling pathways, suggesting that p38 MAPK and JNK inhibitors may help treat F. nucleatum-related periodontal diseases by suppressing CSF3 expression.

Anti-inflammatory effect of beluga lentil extract in RAW 264.7 macrophages (RAW 264.7 대식세포에서 벨루가 렌틸 추출물의 항염증 효과)

  • Hyeon-Ji Song;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.462-473
    • /
    • 2024
  • The anti-inflammatory effect of beluga lentil extract (BLE) and its underlying mechanisms were investigated in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Treatment with BLE significantly decreased nitric oxide (NO) production and protein and mRNA expressions of inducible NO synthase (iNOS) in LPS-treated RAW 264.7 cells. Down-regulation of this inflammatory gene expression was not associated with NF-κB/MAPK signaling pathways, and further mechanistic studies demonstrated that BLE decreased LPS-induced iNOS expression through upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) expression. These results suggest that beluga lentil represent a potential source of natural anti-inflammatory agents, and further studies will be necessary to determine its anti-inflammatory effects in vivo.

Anti-inflammatory effect of Sinhyowoldo-san Extract with regard to Pro-inflammatory Mediators in PMA plus A23187-induced Human Mast Cells (인간 비만세포에서 PMA와 A23187에 의해 유도된 전염증 매개체에 대한 신효월도산 추출물의 항염증 효과)

  • Wi, Gyeong;Yang, Da-Wun;Kang, Ok-Hwa;Kim, Sung-Bae;Mun, Su-Hyun;Seo, Yun-Soo;Kang, Da-Hye;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.117-123
    • /
    • 2014
  • Objectives : Sinhyowoldo-san (SHWDS) is said to be a traditional medicine used for shigellosis, abdominal pain, diarrhea. But mechanism of SHWDS mediated-modulation of immune function is not sufficiently understood. To ascertain the molecular mechanisms of SHWDS 70% EtOH extract on pharmacological and biochemical actions in inflammation, we researched the effect of pro-inflammatory mediators in phorbol-12-myristate-13-acetate (PMA)+ A23187-activated human mast cell line (HMC-1). Methods : In the present research, cell viability was measured by MTS assay. pro-inflammatory cytokine production was measured by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to analyze the activation of mitogen-activated protein kinases (MAPKs), nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). The investigation focused on whether SHWDS inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8), MAPKs and $NF-{\kappa}B$ in PMA+A23187-activated HMC-1 cells. Results : SHWDS has no cytotoxicity at measured concentration (50, 100, and $250{\mu}g/ml$). SHWDS ($250{\mu}g/ml$) inhibits pro-inflammatory cytokine expression in PMA+ A23187-activated HMC-1 cells. Moreover, SHWDS inhibited cyclooxygenase (COX)-2 expression. In activated HMC-1 cells, SHWDS suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2) and c-jun N-terminal Kinase (JNK 1/2). Then, SHWDS suppressed activation of nuclear factor $NF-{\kappa}B$ in nuclear, degradation of IkB ${\alpha}$ in cytoplasm. Conclusions : We propose that SHWDS has an anti-inflammatory therapeutic potential, which may result from inhibition of ERK 1/2, JNK 1/2 phosphorylation and $NF-{\kappa}B$ activation, thereby decreasing the expression of pro-inflammatory genes.

The Study of Anti-inflammatory Effect of Suryeon-hwan Water Extract in RAW 264.7 Cells (대식세포에서 수련환(茱連丸) 물추출물의 항염증작용에 관한 연구)

  • Yoon, Yeo-Hwan;Kim, Sung-Bae;Kang, Ok-Hwa;Mun, Su-Hyun;Seo, Yun-Soo;Yang, Da-Wun;Kang, Da-Hye;Wi, Gyeong;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.125-132
    • /
    • 2014
  • Objectives : Suryeon-hwan (SRH) exhibits potent anti-inflammatory activity with an unknown mechanism. However, there has been a lack of studies regarding the effects of SRH on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. So, the investigation focused on whether SRH inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with 200 ng/mL of LPS 30 min prior to the addition of SRH. Cell viability was measured by MTS assay. The production of nitric oxide (NO) was determined by reacting cultured medium with Griess reagent. The content of level of cytokines (PGE, IL-6) in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. The expression of COX-2, iNOS and MAPKs was investigated by Western blot, RT-PCR. Results : We found that SRH inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, SRH suppressed the LPS-induced phosphorylation of MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. Conclusions : These results suggest that SRH has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the phosphorylation of MAPKs following activation.

Anti-Inflammatory Activity of Dichloromethane Fraction from Katsuwonus pelamis Heart in LPS-Induced RAW 264.7 Cells and Mouse Ear Edema (Lipopolysaccharide로 자극된 RAW 264.7 세포와 마우스 귀부종 모델에 대한 참치 심장 Dichloromethane 분획물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Choi, Hyeun-Deok;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Sung, Nak-Yun;Byun, Eui-Hong;Nam, Hee-Sup;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.101-109
    • /
    • 2017
  • This study investigated the effect of the dichloromethane fraction form Katsuwonus pelamis heart on anti-inflammatory responses in lipopolysaccharide-stimulated RAW 264.7 cells and mouse models. Ethanol extract was partitioned with dichloromethane, ethyl acetate, butanol, and water. Among the fractions, the dichloromethane fraction showed a significant decrease in nitric oxide (NO) and pro-inflammatory cytokines [interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$] production compared to ethanol extract. The dichloromethane fraction attenuated the expression of inducible nitric oxide synthase and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65 proteins in a dose-dependent manner. In addition, the expression of phosphorylation of mitogen-activated protein kinases (MAPKs) was also inhibited by the dichloromethane fraction. Moreover, the administration of 10, 50, and 250 mg/kg body weight-dose dependently inhibited the formation of edema by croton-oil and the application of dichloromethane (2 mg/ear) significantly reduced epidermal and dermal thickness and the infiltrated mast cell numbers. Therefore, the dichloromethane fraction exhibited an anti-inflammation effect by inhibiting $NF-{\kappa}B$ and MAPK signaling activation in macrophages.