• 제목/요약/키워드: Protein kinases

검색결과 731건 처리시간 0.029초

Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways

  • Sung-Hoon Lee;Shin-Young Park;Jung Ha Kim;Nacksung Kim;Junwon Lee
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.551-556
    • /
    • 2023
  • Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKL-induced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis.

공심채 추출물(IAE)의 LPS로 유도된 미세아교세포에서의 Nrf2기전을 통한 항염증 효과 (Ipomoea aquatic Extracts (IAE) Attenuated Microglial Inflammation via Nrf2 Signaling)

  • 최지원;최상윤;허진영
    • 한국식생활문화학회지
    • /
    • 제38권5호
    • /
    • pp.365-372
    • /
    • 2023
  • Ipomoea aquatic is a leafy vegetable of the Convolvulaceae family, and is a tropical plant widely inhabiting southern China and Southeast Asia, and is widely known as Morning Glory in the West. In this study, the anti-inflammatory effects of ethyl acetate extract from Ipomoea aquatic extracts (IAE) were tested against lipopolysaccharide (LPS)-induced activation microglia BV2 cells. The production of nitric oxide (NO) and cell viability were measured using the Griess reagent and MTT assay, respectively. Inflammatory cytokine [interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β)] were detected qPCR in LPS induced BV-2 cells. Subsequently, nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs), and nuclear factor erythroid-2-related factor 2 (Nrf2) were analyzed through western blot analyses and immunofluorescence. Ipomoea aquatic down-regulated of inflammatory markers and up-regulated anti-inflammatory and anti-oxidants in BV2 cells.

Targeted Immunotherapy for Autoimmune Disease

  • Seung Min Jung;Wan-Uk Kim
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.9.1-9.23
    • /
    • 2022
  • In the past few decades, biological drugs and small molecule inhibitors targeting inflammatory cytokines, immune cells, and intracellular kinases have become the standard-of-care to treat autoimmune diseases. Inhibition of TNF, IL-6, IL-17, and IL-23 has revolutionized the treatment of autoimmune diseases, such as rheumatoid arthritis, ankylosing spondylitis, and psoriasis. B cell depletion therapy using anti-CD20 mAbs has shown promising results in patients with neuroinflammatory diseases, and inhibition of B cell survival factors is approved for treatment of systemic lupus erythematosus. Targeting co-stimulatory molecules expressed on Ag-presenting cells and T cells is also expected to have therapeutic potential in autoimmune diseases by modulating T cell function. Recently, small molecule kinase inhibitors targeting the JAK family, which is responsible for signal transduction from multiple receptors, have garnered great interest in the field of autoimmune and hematologic diseases. However, there are still unmet medical needs in terms of therapeutic efficacy and safety profiles. Emerging therapies aim to induce immune tolerance without compromising immune function, using advanced molecular engineering techniques.

Regulatory Roles of MAPK Phosphatases in Cancer

  • Heng Boon Low;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • 제16권2호
    • /
    • pp.85-98
    • /
    • 2016
  • The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.

Combining In Silico Mapping and Arraying: an Approach to Identifying Common Candidate Genes for Submergence Tolerance and Resistance to Bacterial Leaf Blight in Rice

  • Kottapalli, Kameswara Rao;Satoh, Kouji;Rakwal, Randeep;Shibato, Junko;Doi, Koji;Nagata, Toshifumi;Kikuchi, Shoshi
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.394-408
    • /
    • 2007
  • Several genes/QTLs governing resistance/tolerance to abiotic and biotic stresses have been reported and mapped in rice. A QTL for submergence tolerance was found to be co-located with a major QTL for broad-spectrum bacterial leaf blight (bs-blb) resistance on the long arm of chromosome 5 in indica cultivars FR13A and IET8585. Using the Nipponbare (japonica) and 93-11 (indica) genome sequences, we identified, in silico, candidate genes in the chromosomal region [Kottapalli et al. (2006)]. Transcriptional profiling of FR13A and IET8585 using a rice 22K oligo array validated the above findings. Based on in silico analysis and arraying we observed that both cultivars respond to the above stresses through a common signaling system involving protein kinases, adenosine mono phosphate kinase, leucine rich repeat, PDZ/DHR/GLGF, and response regulator receiver protein. The combined approaches suggest that transcription factor EREBP on long arm of chromosome 5 regulates both submergence tolerance and blb resistance. Pyruvate decarboxylase and alcohol dehydrogenase, co-located in the same region, are candidate downstream genes for submergence tolerance at the seedling stage, and t-snare for bs-blb resistance. We also detected up-regulation of novel defense/stress-related genes including those encoding fumaryl aceto acetate (FAA) hydrolase, scramblase, and galactose oxidase, in response to the imposed stresses.

Cedrela sinensis Leaves Suppress Oxidative Stress and Expressions of iNOS and COX-2 via MAPK Signaling Pathways in RAW 264.7 Cells

  • Bak, Min-Ji;Jeong, Jae-Han;Kang, Hye-Sook;Jin, Kyong-Suk;Ok, Seon;Jeong, Woo-Sik
    • Preventive Nutrition and Food Science
    • /
    • 제14권4호
    • /
    • pp.269-276
    • /
    • 2009
  • Overproduction of reactive oxygen species (ROS), including nitric oxide (NO), could be associated with the pathogenesis of various diseases such as cancer and chronic inflammation. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are known to play key roles in the development of these diseases. Cedrela sinensis leaves have been used in Asian countries as a traditional remedy for enteritis, dysentery and itching. In the present study, we investigated the anti-inflammatory effects of Cedrela sinensis leaves in lipopolysaccharide (LPS)- stimulated RAW 264.7 macrophages. Powder of C. sinensis leaves was extracted with 95% ethanol and fractionated with a series of organic solvents including n-hexane, dichloromethane, ethyl acetate, n-butanol, and water. The dichloromethane (DCM) fraction strongly inhibited NO production possibly by down-regulating iNOS and COX-2 expression, as determined by Western blotting. Hydrogen peroxide-induced generation of reactive oxygen species (ROS) was also effectively inhibited by the DCM fraction from C. sinensis leaves. In addition, C. sinensis inhibited LPS-mediated p65 activation via the prevention of IκB-$\alpha$ phosphorylation. Furthermore, mitogen-activated protein kinases (MAPKs) such as ERK 1/2 and p38 were found to affect the expression of iNOS and COX-2 in the cells. Taken together, our data suggest that leaves of C. sinensis could be used as a potential source for anti-inflammatory agents.

Inhibition of MMP-2 and MMP-9 Activities by Limonium tetragonum Extract

  • Bae, Min-Joo;Karadeniz, Fatih;Lee, Seul-Gi;Seo, Youngwan;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • 제21권1호
    • /
    • pp.38-43
    • /
    • 2016
  • Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that take important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Natural products are on the rise for their potential to provide remarkable health benefits. In this context, halophytes have been of interest in the nutraceutical field with reported instances of isolation of bioactive compounds. In this study, Limonium tetragonum, an edible halophyte, was studied for its ability to inhibit MMP-2 and -9 using HT1080 fibrosarcoma cells. Results showed that L. tetragonum extract was able to inhibit the enzymatic activity and mRNA expression of MMP-2 and -9 according to gelatin zymography and RT-PCR assays, respectively, but it was not able to significantly change the MMP pathway related factors such as tissue inhibitors of metalloproteinases. Also, Mitogen-activated protein kinases pathway-related protein levels and their phosphorylation were assayed. While the phosphorylated p38 levels were decreased, extracellular signal-regulated kinase and c-Jun N-terminal kinase were not affected by L. tetragonum treatment. In conclusion, it was suggested that L. tetragonum contains substances acting as MMP inhibitors on enzymatic activity rather than intracellular pathway intervention, which could be useful for further utilization of L. tetragonum as a source for anti-MMP agents.

Lipoteichoic Acid Isolated from Staphylococcus aureus Induces Both Epithelial-Mesenchymal Transition and Wound Healing in HaCaT Cells

  • Kim, Seongjae;Kim, Hyeoung-Eun;Kang, Boyeon;Lee, Youn-Woo;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1820-1826
    • /
    • 2017
  • Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is recognized by Toll-like receptor 2, expressed on certain mammalian cell surfaces, initiating signaling cascades that include nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and mitogen-activated protein kinase. There are many structural and functional varieties of LTA, which vary according to the different species of gram-positive bacteria that produce them. In this study, we examined whether LTA isolated from Staphylococcus aureus (aLTA) affects the expression of junction proteins in keratinocytes. In HaCaT cells, tight junction-related gene expression was not affected by aLTA, whereas adherens junction-related gene expression was modified. High doses of aLTA induced the phosphorylation of extracellular signal-regulated protein kinases 1 and 2, which in turn induced the epithelial-mesenchymal transition (EMT) of HaCaT cells. When cells were given a low dose of aLTA, however, NF-${\kappa}B$ was activated and the total cell population increased. Taken together, our study suggests that LTA from S. aureus infections in the skin may contribute both to the outbreak of EMT-mediated carcinogenesis and to the genesis of wound healing in a dose-dependent manner.

해독금화산 물추출물이 LPS로 유도된 대식세포의 염증반응에 미치는 영향 (Effects of Haedokgumhwa-san Water Extracts on LPS-induced Inflammatory Response in Macrophage)

  • 임재수;강옥화;서윤수;권동렬
    • 대한본초학회지
    • /
    • 제30권5호
    • /
    • pp.67-74
    • /
    • 2015
  • Objectives : TheHaedokgumhwa-sanwater extract (HDKHS) is used in Korea, Japan and China as a traditional therapeutic agent to cure an infectious disease. But its study is not enough. Therefore, the present study focused on the elucidation of HDKHS to investigate the anti-inflammatory effects and to established the possible mechanisms involved in its action on LPS-stimulated immune response in murine macrophages.Methods : Inflammatory status was induced by LPS and measured by increasement of inflammatory mediators. LPS induced secretions of NO and PGE2in RAW 264.7 cells were measured using griess reagent and enzyme-linked immunosorbent assay (ELISA) kit respectively. production of IL-6 was examined using ELISA kit and expression of IL-6 mRNA was measured by RT-PCR method. To investigate the effects of HDKHS on inflammatory mediators, such as iNOS, COX-2 and MAPKs, western blot and RT-PCR were performed.Results : HDKHS significantly reduced production of NO and PGE2 which were induced by LPS. Also, activation of IL-6 was reduced both protein and mRNA levels. The expressions of inflammatory mediator include iNOS and COX-2 were decreased by pretreatment with HDKHS. futhermore The result showed HDKHS down-regulate the LPS induced phosphorylation of ERK 1/2, one of the MAPK family, which is considered as a main regulator of transmission from pathogens to nucleus of immune cells.Conclusions : Our results suggest that the anti-inflammatory properties of HDKHS may stem from the inhibition of pro-inflammatory mediators via suppression of initiation of inflammatory response by inhibiting MAPKs signaling pathways.

RBL-2H3세포에서 생지황약침액의 FcεRI 신호전달을 통한 β-hexosaminidase분비와 Cytokine생성 억제 효과 (Inhibitory Effect of Rehmannia Glutinosa Pharmacopuncture Solution on β-hexosaminidase Release and Cytokine Production via FcεRI signaling in RBL-2H3 Cells)

  • Kang, Kyung-Hwa;Kim, Cheol-Hong
    • 대한약침학회지
    • /
    • 제14권2호
    • /
    • pp.15-24
    • /
    • 2011
  • Background: Type I allergy is involved in allergic asthma, allergic rhinitis, and atopic dermatitis which are accompanied by an acute and chronic allergic inflammatory responses. Rehmannia glutinosa is a traditional medicine in the East Asian region. This study examined whether a Rehmannia Glutinosa pharmacopuncture solution (RGPS) had anti-allergic or anti-inflammatory effects in antigen-stimulated-RBL-2H3 cells. Methods: We determined the effect of RGPS on cell viability using the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay. We also examined the effect of RGPS on the release of ${\beta}$-hexosaminidase and the secretion of IL-4 and TNF-${\alpha}$ using ELISA. In addition, we evaluated the effect of RGPS on the mRNA expression of various cytokines; IL-2, IL-3, IL-4, IL-5, IL-13 and TNF-${\alpha}$ using RT-PCR. Furthermore, we assessed the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-${\kappa}$B using Western blotting after RGPS treatment. Results: We found that RGPS ($10^{-4}$ to $10^{-1}$ dilution) did not cause any cytotoxicity. We observed significant inhibition of ${\beta}$-hexosaminidase release and suppression of the protein secretion of IL-4 and TNF-${\alpha}$ and mRNA expression of multiple cytokines in antigen-stimulated-RBL-2H3 cells after RGPS treatment. Additionally, RGPS suppressed not only the phosphorylation of MAPKs, but also the transcriptional activation of NF-${\kappa}$B in antigen-stimulated-RBL-2H3 cells. Conclusions: These results suggest that RGPS inhibits degranulation and expression of cytokines including IL-4 and TNF-${\alpha}$ via down-regulation of MAPKs and NF-${\kappa}$B activation in antigen-stimulated-RBL-2H3 cells. In conclusion, RGPS may have beneficial effects in the exerting anti-allergic or anti-inflammatory activities.