• 제목/요약/키워드: Protein kinase D

검색결과 393건 처리시간 0.02초

Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Kwon, Sun-Bang;Park, Eun-Sang;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1055-1060
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

Carbachol-induced Phosphorylation of Phospholipase D1 through Protein Kinase C is required for the Activation in COS-7 cells

  • Lee, Byoung-Dae;Kim, Yong;Han, Jung-Min;Suh, Pann-Ghill;Ryu, Sung-Ho
    • BMB Reports
    • /
    • 제34권2호
    • /
    • pp.182-187
    • /
    • 2001
  • Phospholiapse D (PLD), and phosphatidic acid generated by it, have been implicated in receptor-mediated intracellular signaling. Carbachol (CCh) is known to activate PLD1, and protein kinase C (PKC) is known to mediate in this signaling pathway In recent reports (Kim et al., 1999b; Kim et al., 2000), we published our observations of the direct phosphorylation of PLD1 by PKC and we described the phosphorylation-dependent regulation of PLD1 activity. In this study, we investigated the phasphorylation and compartmentalization of PLD1 in terms of CCh signaling in M3 muscarinic receptor (M3R)-expressing COS-7 cells. CCh treatment of COS-7 cells transiently coexpressing PLD1 and M3R stimulated PLD1 activity and induced direct phosphorylation of PLD1 by PKC. The CCh-induced activation and phosphorylation of PLD1 was completely blocked upon pretreatment of the cells with PKC-specific inhibitors. We looked at the localization of the PLD1 phosphorylation by PKC and found that PLD1 was mainly located in the caveolin-enriched membrane (CEM) fraction. Based on these results, we conclude that CCh induces the activation and phosphorylation of PLD1 via PKC and that the phosphorylation of PLD1 occurs in caveolae.

  • PDF

Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase

  • Kim, Jung-Eun;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.299-304
    • /
    • 2010
  • Losartan is a selective angiotensin II (Ang II) type 1 ($AT_1$) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the $G_0/G_1$ cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.

기니픽 갑상선에서 Thyrotropin에 의한 thyroxine 유리에 대한 muscarinic 수용체 자극효과 (Effects of muscarinic receptor stimulation on the thyrotropin-induced thyroxine release in the guinea pig thyroid)

  • 김홍현;김진상
    • 대한수의학회지
    • /
    • 제39권1호
    • /
    • pp.55-61
    • /
    • 1999
  • The present experiments were performed to examine the effects of acetylcholine (ACh) and carbachol (CC) on thyroxine ($T_4$) release and any possible relation between inhibition of $T_4$ release and signaling pathway in guinea pig thyroids. The thyroids were incubated in the medium containing the test agents, samples of the medium were assayed for $T_4$ by EIA kits. ACh and CC inhibited the TSH-stimulated $T_4$ release. These inhibition were reversed by atropine, but not by d-tubocurarine. The inhibitory effects of ACh on $T_4$ release were prevented by $M_{1^-}$ and $M_{3^-}$muscarinic antagonists and its inhibition was also slightly reversed by $M_{2^-}$ and $M_{4^-}$muscarinic antagonists. R59022, like ACh and CC, also inhibited the TSH-stimulated $T_4$ release. This inhibition was reversed by protein kinase C inhibitor and $Ca^{2+}$ channel blocker. The present study suggests that cholinergic inhibition of $T_4$ release from thyroids can be induced mainly by activation of the $M_{1^-}$ or $M_{3^-}$ receptors and that it is mediated through the muscarinic receptorstimulated protein kinase C activation.

  • PDF

Antagonists of NMDA Receptor, Calcium Channel and Protein Kinase C Potentiate Inhibitory Action of Morphine on Responses of Rat Dorsal Horn Neuron

  • Shin, Hong-Kee;Kim, Yeon-Suk;Jun, Jong-Hun;Lee, Seo-Eun;Kim, Jae-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권5호
    • /
    • pp.251-254
    • /
    • 2003
  • The present study was designed to examine whether the co-application of morphine with $Ca^{2+}$ channel antagonist $(Mn^{2+},\;verapamil)$, N-methyl-D-aspartate (NMDA) receptor antagonist (2-amino-5-phosphonopentanoic acid$[AP_5]$, $Mg^{2+}$) or protein kinase C inhibitor (H-7) causes the potentiation of morphine-induced antinociceptive action by using an in vivo electrophysiological technique. A single iontophoretic application of morphine or an antagonist alone induced weak inhibition of wide dynamic range (WDR) cell responses to iontophoretically applied NMDA and C-fiber stimulation. Although there was a little difference in the potentiating effects, the antinociceptive action of morphine was potentiated when morphine was iontophoretically applied together with $Mn^{2+}$, verapamil, $AP_5$, $Mg^{2+}$ or H-7. However, the potentiating action between morphine and each antagonist was not apparent, when the antinociceptive action evoked by morphine or the antagonist alone was too strong. These results suggest that the potentiating effect can be caused by the interaction between morphine and each antagonist in the spinal dorsal horn.

Discrimination of JNK3 bound small molecules by saturation transfer difference NMR experiments

  • Lim, Jong-Soo;Ahn, Hee-Chul
    • 한국자기공명학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-77
    • /
    • 2012
  • The small molecule binding to the c-Jun N-terminal kinase 3 (JNK3) was examined by the measurements of saturation transfer difference (STD) NMR experiments. The STD NMR experiment of ATP added to JNK3 clearly showed the binding of the nucleotide to the kinase. The STD NMR spectrum of dNTPs added to JNK3 discriminated the kinase-bound nucleotide from the unbound ones. After the five-fold addition of ATP to the dNTPs and JNK3 mixture, only signals of the cognate substrate of JNK3, ATP, were observed from the STD NMR experiment. These results signify that by the STD NMR the small molecules bound to JNK3 can be discriminated from the pool of the unbound molecules. Furthermore the binding mode of the small molecule to JNK3 can be determined by the competition experiments with ATP.

The C-terminal domain of PLD2 participates in degradation of protein kinase CKII β subunit in human colorectal carcinoma cells

  • Lee, Young-Hoon;Uhm, Jong-Su;Yoon, Soo-Hyun;Kang, Ji-Young;Kim, Eun-Kyung;Kang, Beom-Sik;Min, Do-Sik;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.572-577
    • /
    • 2011
  • Elevated phospholipase D (PLD) expression prevents cell cycle arrest and apoptosis. However, the roles of PLD isoforms in cell proliferation and apoptosis are incompletely understood. Here, we investigated the physiological significance of the interaction between PLD2 and protein kinase CKII (CKII) in HCT116 human colorectal carcinoma cells. PLD2 interacted with the CKII${\beta}$ subunit in HCT116 cells. The C-terminal domain (residues 578-933) of PLD2 and the N-terminal domain of CKII${\beta}$ were necessary for interaction between the two proteins. PLD2 relocalized CKII${\beta}$ to the plasma membrane area. Overexpression of PLD2 reduced CKII${\beta}$ protein level, whereas knockdown of PLD2 led to an increase in CKII${\beta}$ expression. PLD2-induced CKII${\beta}$ reduction was mediated by ubiquitin-dependent degradation. The C-terminal domain of PLD2 was sufficient for CKII${\beta}$ degradation as the catalytic activity of PLD2 was not required. Taken together, the results indicate that the C-terminal domain of PLD2 can regulate CKII by accelerating CKII${\beta}$ degradation in HCT116 cells.

DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair

  • Ye-Rim Lee;Gi-Sue Kang;Taerim Oh;Hye-Ju Jo;Hye-Joon Park;G-One Ahn
    • Molecules and Cells
    • /
    • 제46권4호
    • /
    • pp.200-205
    • /
    • 2023
  • DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family is a well-known player in repairing DNA double-strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to the severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in an attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.

HQSAR Study on Imidazo[1,2-b]pyridazine Derivatives as p38 MAP Kinase Antagonists

  • Bhujbal, Swapnil P.;Keretsu, Seketoulie;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제11권2호
    • /
    • pp.107-112
    • /
    • 2018
  • p38 MAP kinase belongs to the Mitogen-activated protein (MAP) kinase family; a serine/threonine kinase. It plays an important role in intracellular signal transduction pathways. It is associated with the development and progression of various cancer types making it a crucial drug target. Present study involves the HQSAR analysis of recently reported imidazo[1,2-b]pyridazine derivatives as p38 MAP kinase antagonists. The model was generated with Atom (A), bond (B), chirality (Ch), and hydrogen (H) parameters and with different set of atom counts to improve the model. An acceptable HQSAR model ($q^2=0.522$, SDEP=0.479, NOC=5, $r^2=0.703$, SEE=0.378, BHL=97) was developed which exhibits good predictive ability. A contribution map for the most active compound (compound 17) illustrated that hydrogen and nitrogen atoms in the ring A and ring B, as well as nitrogen atom in ring C and the hydrogen atom in the ring D provided positive activity in inhibitory effect while, the least active compound (compound 05) possessed negative contribution to inhibitory effect. Hence, analysis of produced HQSAR model can provide insights in the designing potent and selective p38 MAP kinase antagonists.