Browse > Article
http://dx.doi.org/10.6564/JKMRS.2012.16.1.067

Discrimination of JNK3 bound small molecules by saturation transfer difference NMR experiments  

Lim, Jong-Soo (Department of Pharmacy, College of Pharmacy, Dongguk University)
Ahn, Hee-Chul (Department of Pharmacy, College of Pharmacy, Dongguk University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.16, no.1, 2012 , pp. 67-77 More about this Journal
Abstract
The small molecule binding to the c-Jun N-terminal kinase 3 (JNK3) was examined by the measurements of saturation transfer difference (STD) NMR experiments. The STD NMR experiment of ATP added to JNK3 clearly showed the binding of the nucleotide to the kinase. The STD NMR spectrum of dNTPs added to JNK3 discriminated the kinase-bound nucleotide from the unbound ones. After the five-fold addition of ATP to the dNTPs and JNK3 mixture, only signals of the cognate substrate of JNK3, ATP, were observed from the STD NMR experiment. These results signify that by the STD NMR the small molecules bound to JNK3 can be discriminated from the pool of the unbound molecules. Furthermore the binding mode of the small molecule to JNK3 can be determined by the competition experiments with ATP.
Keywords
JNK3; NMR; Protein-ligand interaction; saturation transfer difference;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. W. Chow, M. Rincon, J. Cavanagh, M. Dickens, R. J. Davis, R. J. Science 278, 1638 (1997).   DOI
2 D. M. Milne, L. E. Campbell, D. G. Campbell, D. W. Meek, J. Biol. Chem. 270, 5511 (1995).   DOI
3 A. A. Mohit, J. H. Martin, C. A. Miller, C. A. Neuron 14, 67 (1995).   DOI
4 D. D. Yang, C. Y. Kuan, A. J. Whitmarsh, M. Rincón, T. S. Zheng, R. J. Davis, P. Rakic, R. A. Flavell, Nature 389, 865 (1997).   DOI   ScienceOn
5 T. Borsello, F. Gianluigi, Curr. Pharm. Des. 13, 1875 (2007).   DOI
6 M. Mayer, B. Meyer, Angew. Chem. Int. Ed. 38, 1784 (1999).   DOI
7 B. Meyer, T. Peters, Angew. Chem. Int. Ed. 42, 864 (2003).   DOI
8 N. D. Richert, D. L. Blithe, I. Pastan, J. Biol. Chem. 257, 7143 (1982).
9 L. -S. Lee, Y. -C. Cheng, Biochemistry 15, 3686 (1976).   DOI
10 T. Haselhorst, A. C. Lamerz, M. Itzstein, Methods Mol. Biol. 534, 375 (2009).   DOI
11 X. Xie, Y. Gu, T. Fox, J. T. Coll, M. A. Fleming, W. Markland, P. R. Caron, K. P. Wilson, M. SS. Su, Structure 6, 983 (1998).   DOI
12 Y. Zhang, L. Zhou, C. A. Miller, Proc. Natl Acad. Sci. USA 95, 2586 (1998).   DOI
13 M. H. Cobb, E. J. Goldsmith, J. Biol. Chem. 270, 14843 (1995).   DOI   ScienceOn
14 A. Minden, M. Karin, Biochem. Biophys. Acta 1333, F85 (1997).
15 S. Gupta, T. Barrett, A. J. Whitmarsh, J. Cavanagh, H. K. Sluss, B. Derijard, R. J. Davis, EMBO J. 15, 2760 (1996).
16 H. van Dam, D. Wilhelm, I. Herr, A. Stetfen, P. Herrlich, P. Anglel, EMBO J. 14, 1798 (1995).