• Title/Summary/Keyword: Protein hydrolysis

Search Result 589, Processing Time 0.03 seconds

Quality Characteristics of Soy Ice Creams as Affected by Enzyme Hydrolysis Times and Added Calciums (효소처리시간과 칼슘의 종류를 달리한 칼슘강화 콩아이스크림의 품질특성)

  • 김지영;이숙영
    • Korean journal of food and cookery science
    • /
    • v.19 no.2
    • /
    • pp.216-222
    • /
    • 2003
  • The effects of hydrolysis times and calcium source additions (calcium lactate, calcium carbonate), on the qualify characteristics of soy ice cream prepared with soy protein isolate(SPI), were studied. Increasing the hydrolysis time decreased the viscosity and overrun of soy ice creams, but increased the melt-down property. The addition of calcium lactate increased the viscosity of the soy ice cream mix, but no changes were observed from the calcium carbonate addition. The overrun of calcium lactate samples was higher than on addition of calcium carbonate. The addition of calcium lactate and calcium carbonate resulted in decreased melt-down properties, although these effects were more evident in the calcium lactate samples. However, calcium carbonate addition resulted in higher scores in the overall quality of the soy ice creams. In conclusion, better soy ice cream could be prepared by treating the SPI with Flavorzyme for 50 min, along with calcium fortification in the form of calcium carbonate.

Characteristics of Proteins in Italian Millet, Sorghum and Common Meillet (조, 수수 및 기장의 단백질 특성)

  • 하영득;이삼빈
    • Food Science and Preservation
    • /
    • v.8 no.2
    • /
    • pp.187-192
    • /
    • 2001
  • Amino acid composition of proteins in Italian millet, Common millet and sorghum were invstigated by HCI hydrolysis method. The optimum condition was obtained by hydrolysis at 110$\^{C}$ for 24hr. As major amino acids from protein hydrolyzate, the content of tyosine, arginine and phebylalanine were 7.06%, 6.79% and 6.44%, respectively. The content of glutamic acid in Common millet, Italian millet and Sorghum were 5.73%, 5.64% and 5.46%, respectively. Glycine content was about 2.93% in three samples. Contents of crude protein and pure protein in Italian millet, Common millet and sorghum were determined by micro-kjeldahl method. Crude protein contents were slightly higher than that of pure protein. Protein content of sorghum was higher than those of Italian millet and Common millet. For SDS-PAGE analysis, Italian millet showed more soluble proteins including 50kDa, 30kDa and smaller proteins than other cereals. In particular, Common millet and Sorghum only solubilized proteins less than 15kDa.

  • PDF

Functional Properties of Proteolytic Enzyme-Modified Isolated Sesame Meal Protein (단백질 분해효소에 의한 참깨박 단백질의 기능성 변화)

  • Lee, Seon-Ho;Cho, Young-Je;Chun, Sung-Sook;Kim, Young-Hwal;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.708-715
    • /
    • 1995
  • Effect of enzymatic modification with pepsin, papain and trypsin was studied on functional properties of isolated sesame meal protein hydrolysates. Solubility of protein hydrolysates distinctively increased from 2% to $53{\sim}94%$ at pH 4. Emulsifying properties showed marked increase 6 fold and 4.5 fold at degree of 10%, 20% hydrolysis by trypsin and degree of 10% hydrolysis by papain. The emulsion stability of the protein was unstable by heat treatment for 30 min. at $80^{\circ}C$. Foaming properties were also enhanced by enzymatic hydrolysis except at degree of 30% hydrolysis. Bulk density and water absorption of protein with trypsin and papain decreased about 0.1 g/ml and $0.3{\sim}0.7\;ml/g$, but oil absorption was increased about 1 ml/g.

  • PDF

Effect of Ingredients on In vitro Digestibility and Physical Properties of Ginseng-Chicken Meat Porridge (재료에 따른 인삼닭죽의 in vitro 단백질 및 전분 분해율과 물리적 특성)

  • Shin, Eun-Soo;Ryu, Hong-Soo
    • Korean journal of food and cookery science
    • /
    • v.24 no.3
    • /
    • pp.273-281
    • /
    • 2008
  • To determine the nutritional quality and physical properties of ginseng-chicken meat porridge, 10 kinds of ginsengchicken meat porridge samples containing waxy and/or non-waxy rice were analyzed for in vitro protein digestibility and their degree of starch hydrolysis. Viscosity and spreadness were determined for the gelatinized pastes of the porridge samples. Microphotographs of the starch granules and pastes were studied to confirm structural changes in the rice starch during cooking. The starch paste from non-waxy rice porridge had higher viscosity than the starch paste from the waxy rice porridge; however, in the case of the ginseng-chicken meat porridge, the difference in viscosity was negligible. Microphotograph comparisions between the waxy rice porridge and non-waxy rice porridge indicated apparent differences in the shapes of their starch granules and gels. The granule surface of the non-waxy rice was very rough while that of the waxy rice was very smooth; this difference would lead to organoleptical discrepancy. The added ginseng increased the protein digestibility of the chicken meat; however, the protein digestibility of the ginseng-chicken meat porridge was lower than that of the chicken meat or rice porridge due to inhibited protein digestion by the gelatinized starch. Finally, the rice porridge had increased starch hydrolysis with additions of chicken meat and vegetables.

Studies on the Removal of Protein Soils ( I ) -Characterization of Human Epidermal Stratum Corneum as Model Soils for Detergency Test- (단백질 오염의 세척거동에 관한 연구(I) -세척 시험용 모델 오염으로서의 인체 표피 각질층의 특성-)

  • Lee Jeong Sook;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 1986
  • The purpose of this study was to investigate the characteristics of human epidermal stratum corneum as protein model soils for detergency test. The stratum corneum was collected by scraping of the skin and purified with solvent. The results obtained were as follows: 1. Purified stratum corneum contained $92.38\%$ of crude protein. 2. In the amino acid compositions, contents of glycine, glutamic acid and serine were high and methionine and cystine were low. They were similar to fibrous $\alpha$-keratin consisted of stratum corneum. Whereas the content of polar amino acids was decreased, that of nonpolar amino acids was increased after enzyme hydrolysis. 3. The hydrolysis of stratum corneum with enzyme increased muck at initial reaction time and levelled off in 4$\~$6 hours. The hydrolysis with enzyme was improved effectively at its optimum temperature and pH. 4. The hydrolysis of stratum corneum with enzyme increased by the addition of surfactants. The order of compatibility with enzyme was in the order of Triton X-100>AOS>LAS.

  • PDF

Single Hydrolysis Method for the Amino Acid Determination in Foods and Composite Dishes (식품의 아미노산 정량을 위한 단일가수분해 방법의 개발)

  • 박내선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.422-429
    • /
    • 1997
  • For the complete and accurate amino acid determination of protein and food samples, 3 different hydrolysis procedures have been conducted in parallel for each sample, which include the alkaline hydrolysis for tryptophan determination, performic acid oxidation prior to the acid hydrolysis for the determination of cysteine and cystine, and the 6N HCl hydrolysis for the determination of the rest of amino acids. In the present study, amino acid concentrations obtained from the modified single hydrolysis procedure were compared with the values from the conventional hydrolysis procedures in casein and nine food and composite dish samples. In most of the samples tested, the modified single hydrolysis procedure gave significantly higher values of cysteins and cystein compared to the performic acid oxidation method, but resulted in a considerable destruction of tryptophan in food and composited dish samples. There was no consistent difference in the rest of amino acid concentrations between the two hydrolysis systems. Therefore, for complete amino acid determination of various foods and composite dishes, the single hydrolysis method may replace the 6N HCl hydrolysis and performic acid oxidation methods, and thereby reduces 3 hydrolyses to 2 steps with much higher recoveries of the sulfur containing amino acids.

  • PDF

Studies on the Enzymatic Partial Hydrolysis of Soybean Protein Isolates (효소처리에 의한 분리대두 단백질의 부분 가수분해에 관한 연구)

  • Lee, Cherl-Ho;Kim, Chan-Shick;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.228-234
    • /
    • 1984
  • A partial hydrolysis of soybean protein isolate was carried out by using pepsin and trypsin. The degree of hydrolysis was evaluated by chemical analysis, viscometric measurements and gel electrophoresis. The functional properties of the hydrolyzates such as flow behavior, emulsion properties and foaming properties were evaluated. A selective hydrolysis of 11S protein fraction by pepsin was observed from the SDS-PAG electrophoresis. The changes in the molecular weight distribution by different conditions of enzyme hydrolysis were evaluated. The changes in the intrinsic viscosity of the protein hydrolylate by reaction time were highly correlated to the contents of TCA soluble protein and 0.03 M $CaCl_2$ soluble nitrogen. The degree of hydrolysis ($DH_{TCA}$, $DH_{Ca}$) were used to evaluate the effect of enzyme treatment on the functional properties of the hydrolyzate. The apparent viscosity and emulsion capacity and stability of the protein solution decreased as DH increased, while the foaming capacity increased linearly with the increasing DH.

  • PDF

Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein

  • Cho, Dae-Yeon;Jo, Kyungae;Cho, So Young;Kim, Jin Man;Lim, Kwangsei;Suh, Hyung Joo;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • This study utilized commercially available proteolytic enzymes to prepare egg-white protein hydrolysates (EPHs) with different degrees of hydrolysis. The antioxidant effect and functionalities of the resultant products were then investigated. Treatment with Neutrase yielded the most ${\alpha}$-amino groups (6.52 mg/mL). Alcalase, Flavourzyme, Protamex, and Ficin showed similar degrees of ${\alpha}$-amino group liberation (3.19-3.62 mg/mL). Neutrase treatment also resulted in the highest degree of hydrolysis (23.4%). Alcalase and Ficin treatment resulted in similar degrees of hydrolysis. All hydrolysates, except for the Flavourzyme hydrolysate, had greater radical scavenging activity than the control. The Neutrase hydrolysate showed the highest 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity ($IC_{50}=3.6mg/mL$). Therefore, Neutrase was identified as the optimal enzyme for hydrolyzing egg-white protein to yield antioxidant peptides. During Neutrase hydrolysis, the reaction rate was rapid over the first 4 h, and then subsequently declined. The $IC_{50}$ value was lowest after the first hour (2.99 mg/mL). The emulsifying activity index (EAI) of EPH treated with Neutrase decreased, as the pH decreased. The EPH foaming capacity was maximal at pH 3.6, and decreased at an alkaline pH. Digestion resulted in significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS radical scavenging activity. The active peptides released from egg-white protein showed antioxidative activities on ABTS and DHHP radical. Thus, this approach may be useful for the preparation of potent antioxidant products.

Optimization and production of protein hydrolysate containing antioxidant activity from tuna cooking juice concentrate by response surface methodology

  • Kiettiolarn, Mookdaporn;Kitsanayanyong, Lalitphan;Maneerote, Jirawan;Unajak, Sasimanas;Tepwong, Pramvadee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.335-349
    • /
    • 2022
  • To optimize the hydrolysis conditions in the production of antioxidant hydrolysates from tuna cooking juice concentrate (TC) to maximize the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, TC containing 48.91% protein was hydrolyzed with Alcalase 2.4 L, and response surface methodology (RSM) was applied. The optimum hydrolysis conditions included a 2.2% (w/v) Alcalase concentration and 281 min hydrolysis time, resulting in the highest DPPH radical scavenging activity of 66.49% (0.98 µmol Trolox/mg protein). The analysis of variance for RSM showed that hydrolysis time was an important factor that significantly affected the process (p < 0.05). The effects of different drying methods (freeze drying, hot air drying, and vacuum drying) on the DPPH radical scavenging activity and amino acid (AA) profiles of TC hydrolysate (TCH) were evaluated. Vacuum-dried TCH (VD) exhibited an increase in DPPH radical scavenging activity of 81.28% (1.20 µmol Trolox/mg protein). The VD samples were further fractionated by ultrafiltration. The AA profiles and antioxidant activities in terms of the DPPH radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, ferric reducing antioxidant power, and ferrous ion chelating activity were investigated. Glutamic acid, glycine, arginine, and cysteine were the major AAs found in the TCH fractions. The highest DPPH radical scavenging activity was found in the VD-1 fraction (< 5 kDa). The VD-3 fraction (> 10 kDa) exhibited the highest ABTS radical scavenging activity and ferric reducing antioxidant power. The ferrous ion chelating activity was the highest in VD-1 and VD-2 (5 to 10 kDa). In conclusion, this study provided the optimal conditions to obtain high antioxidant activities through TCH production, and these conditions could provide a basis for the future application of TCH as a functional food ingredient.

DNA-Independent ATPase Activity of Deinococcus radiodurans RecA Protein Is Activated by High Salt (고농도 염에 의한 Deinococcus radiodurans RecA 단백질의 DNA 비의존성 ATPase 역가의 활성화)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • Deinococcus radiodurans RecA protein, when bound to DNA, exhibits a DNA-dependent ATPase. In the absence of DNA, the rate of RecA protein-promoted ATP hydrolysis drops 1,000-fold under the physiological concentrations of salt. This DNA-independent activity can be stimulated to levels approximating those observed with DNA by adding high concentrations (approximately 1.6 M) of a wide variety of salts. This effect was characterized by varying salt concentration and comparing the effects of different ion types. The higher concentrations of salt stimulated the ATP hydrolysis by RecA protein in the absence of DNA. At 1.6 M chloride, the observed stimulation showed the following cation trend $K^+{\geq}Na^+$ > $NH_4^+$ and the following anion sequence was observed: $glutamate^- \; > \; C1^- \;> \; acetate^-\; > \;PO_4^-$ at 1.6 M $K^+$. The catalytic properties of the salt-stimulated ATP hydrolysis reaction was optimal between pH 7.0 and 8.0, which was similar to the double stran nded DNA-dependent ATPase activities of Deinococcus radiodurans RecA protein. In the absence of DNA the active species for ATP hydrolysis by RecA protein was shown to be an aggregate of three RecA protein molecules.