• Title/Summary/Keyword: Protein delivery

Search Result 297, Processing Time 0.021 seconds

Specific Cell-Signal Targets for Cancer Chemotherapy

  • Aszalos, Adorjan
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • Attempts to develop drugs, specific for cancer cells, are dealt here according to the intended cell-target. While many target specific drugs were developed, they reach only moderate successes in clinics for reasons, such as, delivery problem, lack of in vivo efficacy or toxicity. However, recent efforts focusing on the diversity of tyrosine kinases, participating in cell-signal transduction, brought fruit. The first such drug, Givec, approved by the USFDA recently, is used in clinics with great success to threat CML. The drug inhibits tyrosin kinase of bcr-abl, c-abl and v-abl. Work is progressing on other tyrosin kinase inhibitors and on other type of specific cancer cell signal protein inhibitors. These efforts are hoped to yield better cures for cancer in the near future.

Innovative Therapeutic Approaches for Mucopolysaccharidosis III

  • Sohn, Young Bae
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.2
    • /
    • pp.37-41
    • /
    • 2018
  • Mucopolysaccharidosis III (MPS III, Sanfilippo syndrome) is a rare autosomal recessive disease caused by a deficiency of one of four enzymes involved in the degradation of glycosaminoglycan (GAG). The resultant cellular accumulation of GAG causes various clinical manifestations. MPS III is divided into four subtypes depending on the deficient enzyme. All the subtypes show similar clinical features and are characterized by progressive degeneration of the central nervous system. A number of genetic and biochemical diagnostic methods have been developed. However, there is no effective therapy available for any form of MPS III, with treatment currently limited to clinical management of neurological symptoms. Main purpose of the treatment for MPS III is to prevent neurologic deterioration. Because conventional intravenous enzyme replacement therapy (ERT) has a limitation due to inability to cross the blood-brain barrier, several innovative therapeutic approaches for MPS III are being developed. This review covers the currently developing new therapeutic options for MPS III including high dose ERT, substrate reduction therapy, intrathecal or intraventricular ERT, fusion protein delivery using bioengineering technology, and gene therapy.

Complete genome sequence of Lactobacillus plantarum SK156, a candidate vehicle for mucosal vaccine delivery

  • Hwang, In-Chan;Kim, Sang Hoon;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.956-958
    • /
    • 2020
  • Lactobacillus plantarum SK156 was isolated from traditional Korean food. The genome of SK156 strain consists of a circular chromosome (3,231,383 bp) with guanine (G) + cytosine (C) content of 44.56%. Among the predicted 2,991 protein-coding genes, the genome included genes encoding for α-amylase, which hydrolyzes α-bonds of polysaccharides. Genomic sequencing of L. plantarum SK156 will give information on the mechanism involved in the enzymatic degradation of polysaccharides and its application for improving feed efficiency.

Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles

  • Hong, Eun Ji;Kim, Yoon-Seok;Choi, Dae Gun;Shim, Min Suk
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.429-436
    • /
    • 2018
  • Targeted intracellular delivery of therapeutic agents is one of the great challenges for cancer treatment. Aptamers that bind to a variety of biological targets have emerged as new targeting moieties with high specificity for targeted cancer therapy. In this study, near-infrared (NIR) light-absorbing hollow gold nanocages (AuNCs) were synthesized and conjugated with AS1411 aptamer to achieve cancer-targeted photothermal therapy. AuNC functionalized with PEG and AS1411 (AS1411-PEG-AuNC) exhibited selective cellular uptake in breast cancer cells due to selective binding of AS1411 to nucleolin, a protein that is over-expressed in cancer cells over normal cells. As a result, AS1411-PEG-AuNC showed cancer-targeted photothermal activity. This study demonstrates that aptamer-conjugated AuNCs are effective tumor-targeting photothermal agents.

Mitochondrial genome editing: strategies, challenges, and applications

  • Kayeong Lim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.19-29
    • /
    • 2024
  • Mitochondrial DNA (mtDNA), a multicopy genome found in mitochondria, is crucial for oxidative phosphorylation. Mutations in mtDNA can lead to severe mitochondrial dysfunction in tissues and organs with high energy demand. MtDNA mutations are closely associated with mitochondrial and age-related disease. To better understand the functional role of mtDNA and work toward developing therapeutics, it is essential to advance technology that is capable of manipulating the mitochondrial genome. This review discusses ongoing efforts in mitochondrial genome editing with mtDNA nucleases and base editors, including the tools, delivery strategies, and applications. Future advances in mitochondrial genome editing to address challenges regarding their efficiency and specificity can achieve the promise of therapeutic genome editing.

Expression, Purification and Transduction of PEP-1-Botulinum Neurotoxin Type A (PEP-1-BoNT/A) into Skin

  • Kim, Dae-Won;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Jang, Sang-Ho;Won, Moo-Ho;Kang, Tae-Cheon;Chung, Kwang-Hoe;Jung, Hyun-Ho;Cho, Sung-Woo;Choi, Jin-Hi;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.642-647
    • /
    • 2006
  • Botulinum neurotoxin A (BoNT/A) has been used therapeutically to treat muscular hypercontractions and sudomotor hyperactivity and it has been reported that BoNT/A might have analgesic properties in headache. PEP-1 peptide is a known carrier peptide that delivers fulll-ength native proteins in vitro and in vivo. In this study, a BoNT/A gene were fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-BoNT/A fusion protein. The expressed and purified PEP-1-BoNT/A fusion proteins were efficiently transduced into cells in a time- and dose-dependent manner when added exogenously in a culture medium. In addition, immuno-histochemical analysis revealed that PEP-1-BoNT/A fusion protein efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin. These results suggest that PEP-1-BoNT/A fusion protein provide an efficient strategy for therapeutic delivery in various human diseases related to this protein.

Synthesis and Optimization of Cholesterol-Based Diquaternary Ammonium Gemini Surfactant (Chol-GS) as a New Gene Delivery Vector

  • Kim, Bieong-Kil;Doh, Kyung-Oh;Bae, Yun-Ui;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-${\alpha}$- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.

Formulation and Characterization of Antigen-loaded PLGA Nanoparticles for Efficient Cross-priming of the Antigen

  • Lee, Young-Ran;Lee, Young-Hee;Im, Sun-A;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • Background: Nanoparticles (NPs) prepared from biodegradable polymers, such as poly (D,L-lactic acid-co-glycolic acid) (PLGA), have been studied as vehicles for the delivery of antigens to phagocytes. This paper describes the preparation of antigen-loaded PLGA-NPs for efficient cross-priming. Methods: NPs containing a similar amount of ovalbumin (OVA) but different sizes were produced using a micromixer-based W/O/W solvent evaporation procedure, and the efficiency of the NPs to induce the cross-presentation of OVA peptides were examined in dendritic cells (DCs). Cellular uptake and biodistribution studies were performed using fluorescein isothiocyanate (FITC)-loaded NPs in mice. Results: The NPs in the range of $1.1{\sim}1.4{\mu}m$ in size were the most and almost equally efficient in inducing the cross-presentation of OVA peptides via $H-2K^b$ molecules. Cellular uptake and biodistribution studies showed that opsonization of the NPs with mouse IgG greatly increased the percentage of FITC-positive cells in the spleen and lymph nodes. The major cell type of FITC-positive cells in the spleen was macrophages, whereas that of lymph nodes was DCs. Conclusion: These results show that IgG-opsonized PLGA-NPs with a mean size of $1.1{\mu}m$ would be the choice of biodegradable carriers for the targeted-delivery of protein antigens for cross-priming in vivo.

Targeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.157-162
    • /
    • 2013
  • Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and- mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine production and can induce antigen-specific immune response in mucosal compartments, where FMDV infection has been initiated, which is hardly achievable through parenteral immunization. Given that effective delivery of vaccine materials into immune inductive sites is prerequisite for effective oral mucosal vaccination, M cell-targeting strategy is crucial in successful vaccination since M cells are main gateway for luminal antigen influx into mucosal lymphoid tissue. Here, we applied previously identified M cell-targeting ligand Co1 to VP1 of FMDV in order to test the possible oral mucosal vaccination against FMDV infection. M cell-targeting ligand Co1-conjugated VP1 interacted efficiently with M cells of Peyer's patch. In addition, oral administration of ligand-conjugated VP1 enhanced the induction of VP1-specific IgG and IgA responses in systemic and mucosal compartments, respectively, in comparison with those from oral administration of VP1 alone. In addition, the enhanced VP1-specific immune response was found to be due to antigen-specific Th2-type cytokine production. Collectively, it is suggested that the M cell-targeting strategy could be applied to develop efficient oral mucosal vaccine against FMDV infection.

Bioinspired Polymers that Control Intracellular Drug Delivery

  • Allan S. Hoffman;Patrick S. Stayton;Oliver-Press;Niren-Murthy;Chantal A. Lackey;Charles-Cheung;Fiona-Black;Jean Campbell;Nelson Fausto;Themis R. Kyriakides;Paul-Bornstein
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.205-212
    • /
    • 2001
  • One of the important characteristics of biological systems os their ability to change im-portant properties in response to small environmental signals. The molecular mechanisms that biological molecules utilize to sense and respond provide interesting models for the development of "smart" polymeric biomaterials with biomimetic properties. An important example of this is the protein coat of viruses, which contains peptide units that facilitate the trafficking of the virus into the cell via endocytosis, then out of the endosome into the cytoplasm, and from there into the nucleus, We have designed a family of synthetic polymers whose compositions have been de-signed to mimic specific peptides on viral coats that facilitate endosomal escape. Our biomimetic polymers are responsive to the lowered pH whinin endosomes, leading to distruption of the en-dosomal membrane and release of important biomolecular druges such as DNA, RNA, peptides and proteins to the cytoplasm before they are trafficked to lysosomes and degraded by lysosomal en-zymes. In this article, we review our work on the design, synthesis and action of such smart, pH-sensitive polymers.

  • PDF