• Title/Summary/Keyword: Protein damage

검색결과 1,192건 처리시간 1.327초

사염화탄소(四鹽化炭素) 간장장해(肝臟障害) 동물(動物)에서의 Sulfisoxazole의 흡수(吸收)와 배설(排泄)에 관(關)한 연구(硏究) (The Effects of Pretreatment with Carbon Tetrachloride on the Absorption and Excretion of Sulfisoxazole)

  • 최준식
    • Journal of Pharmaceutical Investigation
    • /
    • 제6권2호
    • /
    • pp.88-94
    • /
    • 1976
  • This paper attempted to investigate the effect of pretreatment with carbon tetrachloride on absorption, excretion, protein binding, and biological half-life of sulfisoxazol from rats and rabbits. Absorption of sulfisoxazol was found to decrease in severe damage rats, compared with that of normal rats, but in mild rats, absorption of sulfisoxazol was similar to that of nomal rats. Absorption of sulfisoxazol was decreased significantly in severe damage rabbit pretreated with carbon tetrachloride but in mild damage rabbit, absorption of sulfisoxazol was not influenced significantly. Pretreatment with carbon tetrachloride gave the effect on clearance of sulfisoxazol in part but protein binding percent of sulfisoxazol was not influenced by concentration of carbon tetrachloride.

  • PDF

Tryptophan 투여가 Reserpine과 식이 탄수화물 수준이 다른 저단백식이를 섭취한 흰쥐의 혈장 아미노산 농도, 간 Cytochrome P450 함량 및 간세표 미세구조에 미치는 영향 (The Effect of Tryptophan Administration on the Plasma Free Amino Acid Concentration, Liver Microsomal Cytochrome P450 Content and Cellular Structure of Rats Consumed Reserpine and Low Protein Diet with Different Carbohydrate Contents)

  • 신동순
    • Journal of Nutrition and Health
    • /
    • 제29권7호
    • /
    • pp.689-702
    • /
    • 1996
  • The purpose of this experiment was to compare the effects of tryptophan administration on nutritional status of female rats which consumed reserpine and 6% casein diet with different carbohydrate contents(87%, 65%, 44% respective). Final body weight, body weight gain, FER, plasma amino acid concentration and microsomal cytochrome P 450 content in liver were measured and microscopic structure of hepatocytes was observed. In low-protein diet, the higher the carbohydrate content of diet was, the lower the damage was in the rat's liver. Tryptophan administration after dose of reserpine induced more effective recovery from liver damage of rats in high carbohydrate diet group than that in low carbohydrate diet group. In conclusion, the general nutritional assessments such as final body weight and body weight gain provided better estimate of the degree of structural changes in hepatocytes than functional assessment such as plasma amino acid concentration or liver microsomal cytochrome P450.

  • PDF

Dose absorption of Omicron variant SARS-CoV-2 by electron radiation: Using Geant4-DNA toolkit

  • Mehrdad Jalili Torkamani;Chiman Karami;Pooneh Sayyah-Koohi;Farhood Ziaie;Seyyedsina Moosavi;Farhad Zolfagharpour
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2421-2427
    • /
    • 2024
  • In this research, the Omicron variant of the SARS-CoV-2 virus was simulated and exposed to electron radiation with up to 20 keV energy. Absorbed energy was measured for spike protein, nucleocapsid protein, and envelope of the virus. Simulations were performed by Geant4-DNA in a water environment at temperature of 20 ℃ and pressure of 1 atm. Since the viral RNA is kept inside the nucleocapsid protein, damage to this area could destroy the viral RNA strand and create an inactive virus. Our findings showed that electron beams with an energy of 2.5 keV could cause a maximum absorption dose and consequently maximum damage to the nucleocapsid and effectively be used for inactivation virus.

Effects of Ginseng Protein on Relative Survival and Chromosome Aberration of UV Irradiated Cells

  • Kim, Choon-Mi;Park, So-Young
    • Archives of Pharmacal Research
    • /
    • 제11권3호
    • /
    • pp.225-229
    • /
    • 1988
  • A ginseng protein fraction which has been reported to have radiation protective effect was purified from Korean ginseng and its effects on relative survival and chromosome aberration were studied in UV irradiated CHO-K1 cells. When the protein fraction $(100\;{\mu}g/ml)$ was added to the cells before UV irradiation at 4\;J/$m^2$,, the survival rates were increased to 53.8% from 40.6% in control. Addition of the protein $(100\;{\mu}g/ml)$ after UV irradiation at 4 and $8\;J/m^2$ raised the rates to 85.4 and 24.0% from 79.2 and 11.5% in control, respectively. When the ginseng protein $(800\;{\mu}g/ml)$ was added to the cells exposed to UV light at 10, 20, $30\;J/m^2$, the frequencies of chromosome aberration (CA) were reduced significantly to almost same level regardless of the UV dose increment and there was no significant difference between pre- and post-treatment. When the concentration of ginseng protein was increased from 200 to $800\;{\mu}g/ml$, at UV dose of 10, 20, $30\;J/m^2$ each, the CA frequencies were decreased consistently as the dose of ginseng protein increased, at all UV doses tested. Similar effects were observed in both cases of pre- and post-treatment. The data suggest that the protein may reduce cell damage caused by UV light, especially damage to DNA molecule, or play a role in repair processes of damaged DNA, to increase cell survival and reduce chromosome aberrations.

  • PDF

Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells

  • Jinshun Zhan;Zhiyong Gu;Haibo Wang;Yuhang Liu;Yanping Wu;Junhong Huo
    • Animal Bioscience
    • /
    • 제37권2호
    • /
    • pp.303-314
    • /
    • 2024
  • Objective: Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. Methods: GRECs were cultured in basal medium or basal medium containing 1 ㎍/mL LPS, or 1 ㎍/mL LPS and 20 ㎍/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. Results: Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPS-induced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05

Suppressive Effects of Various Antioxidants on Melamine-induced Oxidative DNA Damage in Human Lymphocytes

  • Park, Seul-Ki;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.243-249
    • /
    • 2009
  • Melamine, which is used to produce melamine resin for various industrial applications, has a high nitrogen content by mass. For this reason, it has been illegally added to foods to increase their apparent protein content. In the present investigation, melamine-induced oxidative damage of human lymphocyte DNA was evaluated by Comet assay. The in vitro oxidative DNA damage caused by melamine increased in a dose-dependent manner. This DNA damage was significantly inhibited by treatment with ascorbate. Moreover, the traditional Korean medicinal herb, named Acanthopanax, red ginseng and green tea markedly reduced the DNA damage. Various edible plant extracts also inhibited melamine-induced oxidative DNA damage in vitro. Melamine enhanced intracellular ROS generation, and this effect was suppressed by treatment with various antioxidants.

A Study of Hair Damage by Magic Straight Perm

  • Lim, Sun-Nye
    • Applied Microscopy
    • /
    • 제42권3호
    • /
    • pp.129-135
    • /
    • 2012
  • In this study, the changes in hair quality before and after Magic straight perm have been evaluated through a hair damage measurement method. For this, a healthy high school student's (age18 years) wavy hair was selected and permed on the left and right sides. Then, the changes caused by physical methods which were applied during the fl at iron-based Magic straight perm were evaluated based on the hair damage measurement method before and after the Magic straight perm. According to the protein release test after the Magic straight perm, 1.26% in average and 0.14% was observed in Cool Magic straight perm sample. In a field emission scanning electron microscopy (FE-SEM) test, saw teeth-shaped partial desquamation of cuticle cells and impurities were observed in the warm-treated hair sample. In atomic force microscope (AFM), line-profile is a method to represent roughness data on hair. According to analysis on 3-dimensional (3D) images, the hair with Cool Magic straight perm was lower than the hair with Warm Magic perm in terms of the color change of 3D images. In addition, vertical changes were observed in the hair with Cool Magic perm. As a result, irregular surface roughness was observed. This study proposed a method to minimize hair damage by cooling down the heat with the cool hair straightener as soon as the Warm Magic was finished.

Control of Singlet Oxygen-induced Oxidative Damage in Escherichia coli

  • Kim, Sun-Yee;Kim, Eun-Ju;Park, Jeen-Woo
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.353-357
    • /
    • 2002
  • Singlet oxygen ($^1O_2$) is highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide desmutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of anticxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.

Gamma-tocopherol ameliorates hyperglycemia-induced hepatic inflammation associated with NLRP3 inflammasome in alloxan-induced diabetic mice

  • Lee, Heaji;Lim, Yunsook
    • Nutrition Research and Practice
    • /
    • 제13권5호
    • /
    • pp.377-383
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Hyperglycemia-induced hepatic damage has been recognized as one of the major cause of complications in diabetes. Hepatic complications are associated with inflammation and oxidative stress in diabetes. In this study, we investigated the hypothesis that gamma-tocopherol (GT) supplementation ameliorates NLRP3 inflammasome associated hepatic inflammation in diabetes. MATERIALS/METHODS: Diabetes was induced by the intraperitoneal injection of alloxan (150 mg/kg. BW) in ICR mice. All mice were fed with a control diet (AIN-76A). After diabetes was induced (fasting glucose level ${\geq}250mg/dL$), the mice were treated with tocopherol-stripped corn oil or GT-supplemented (35 mg/kg) corn oil, respectively, by gavage for 2 weeks. RESULTS: GT supplementation reduced fasting blood glucose levels in diabetic mice relative to non-treated diabetic mice. Moreover, GT supplementation ameliorated hyperglycemia-induced hepatic damage by regulation of NOD-like receptor protein 3 (NLRP3)-inflammasome associated inflammation represented by NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain, caspase-1, nuclear $factor-{\kappa}B$ pathway as well as oxidative stress demonstrated by nuclear factor erythroid 2-related factor 2, NAD(P)H dehydrogenase quinone 1, catalase and glutathione-dependent peroxidase in diabetic mice. CONCLUSION: The findings suggested that GT supplementation ameliorated hepatic damage by attenuating inflammation and oxidative stress in alloxan-induced diabetic mice. Taken together, GT could be a beneficial nutrient that can ameliorate inflammatory responses associated with NLRP3 inflammasome in hyperglycemia-induced hepatic damage.

Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-κB Pathways

  • Kim, Sung Hwan;Lee, In Chul;Ko, Je Won;Moon, Changjong;Kim, Sung Ho;Shin, In Sik;Seo, Young Won;Kim, Hyoung Chin;Kim, Jong Choon
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.180-188
    • /
    • 2015
  • This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-${\kappa}B$ and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.