• 제목/요약/키워드: Protein conformation

검색결과 172건 처리시간 0.024초

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • 한국자기공명학회:학술대회논문집
    • /
    • 한국자기공명학회 2002년도 International Symposium on Magnetic Resonance
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF

Construction of 19F-13C Solid-State NMR Probe for 400MHz Wide-Bore Magnet

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • 한국자기공명학회논문지
    • /
    • 제17권2호
    • /
    • pp.81-85
    • /
    • 2013
  • Various fluorine-containing materials are used in electronic devices like LCD display panels and Li-ion batteries. The structural conformation of fluorine in fluorinated materials is an important contributing factor that influences the chemical and physical properties. The conformation can be changed by heat and stress during manufacture or use. Understanding the conformational changes is critical for understanding the performance and durability of electronic devices. Solid-state NMR spectroscopy could be widely used for the analysis of various fluorine-containing materials for electronic devices. However, conventional CPMAS probes cannot be used for in-situ analysis of fluorine-containing electronic devices like LCD panels and Li-ion batteries. In this paper, we show the design, construction, and optimization of a $^{19}F-^{13}C$ double-resonance solid-state NMR probe for a 400MHz wide-bore magnet with a flat square coil for in-situ analysis of fluorine-containing electronic devices without observing fluorine background signals. This custom-built probe does not show any fluorine background signals, and can have higher efficiency for lossy samples.

수용성 CD-gp120 결합체의 면역화로 유도된 항 gp120 항체의 특성에 관한 연구 (Immunization with a soluble CD4-gp120 complex preferentially induces neutralizing anti-Human Immunodeficiency Virus Type lantibodies directed to conformation-dependent epitopes of gp120)

  • Kang, Chang-Yuil
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 제2회 추계심포지움
    • /
    • pp.61-67
    • /
    • 1994
  • One fundamental problem in developing an AIDS vaccine is antigenic variation of HIV. Despite a substantial induced immune response in gp120-immunized monkeys and humans, high titers of V3-directed type specific neutralizing antibodies may not be sufficient to neutralize continuously emerging new isolates. Several studies analyzing anti-gp120 antibodies in HIV-infected individuals have clearly indicated that most broadly neutralizing antibodies are directed to conformation-dependent epitopes. Therefore, it seems important to evaluate the potential efficacy of candidate gp120 vaccines at inducing such antibodies, that might be potentially protective against multiple HIV strains. One concern in the development of any recombinant protein as a vaccine is its stability when mixed with an adjuvant. This could be a particularly important factor for recombinant gp120, given the conformational nature of its major, broadly neutralizing, epitopes. We hypothesized that gp120 complexed with recombinant CD4 could stabilize the conformation-dependent epitopes and effectively deliver these epitopes to the immune system. In this study, a soluble gp120-CD4 complex in Syntex Adjuvant Formulation was tested in mice to analyze the anti-gp120 antibody response. With the aim of defining the fine specificity and neutalizing activities of the immune response, 17Mabs were generated and characterized. The studies indicate that the gp120-CD4 complex elicits neutralizing anti-gp120 antibodies, most of which are directed to the conformation dependent epitopes.

  • PDF

굴의 패각으로부터 추출된 단백질의 특성연구 (Characteristics of protein extracted from oyster shell)

  • 이승우;신나영;최청송
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.37-40
    • /
    • 2001
  • We showed the result that an appreciable difference of secondary structures in the intracrystlline protein was observed between Normal and Deform shells. In order to understand the exact secondary structure of proteins, we investigated the changes in protein conformation from the specific layers via Fourier Self-Deconvolution(FSD) techniques, using ATR(Attenuated Total Reflection) information.

  • PDF

단백질 분자에서 변형된 채널 발견을 위한 유효 사이드 체인 배치 알고리즘 (An Algorithm for Computing Valid Side Chain Conformations for Finding Transformed Channels in a Protein Molecule)

  • 최지훈;김병주;김구진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권1호
    • /
    • pp.1-4
    • /
    • 2015
  • 본 논문에서는 주어진 채널이 변형될 때, 아미노산들의 유효한 사이드 체인 배치(side chain conformation)를 찾는 알고리즘을 제시한다. 제안된 알고리즘은 아미노산의 유연성에 근거하여 사이드 체인 유연성을 가진 단백질 분자를 구현하고, 채널 변화에 영향을 주는 인접 아미노산(adjacent amino acid)을 추출한다. 인접 아미노산과 이웃(neighbor) 아미노산의 충돌 검사를 수행하여 유효하지 않은 사이드 체인 배치를 제거한 후, 회전각 조합 트리(rotation angle combination Tree)를 구성하여 사이드 체인 배치 중 유효한 것들만을 추출한다.

Solution Structure of the Cytoplasmic Domain of Syndecan-3 by Two-dimensional NMR Spectroscopy

  • Yeo, In-Young;Koo, Bon-Kyung;Oh, Eok-Soo;Han, Inn-Oc;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권5호
    • /
    • pp.1013-1017
    • /
    • 2008
  • Syndecan-3 is a cell-surface heparan sulfate proteoglycan, which performs a variety of functions during cell adhension process. It is also a coreceptor for growth factor, mediating cell-cell and cell-matrix interaction. Syndecan-3 contains a cytoplasmic domain potentially associated with the cytoskeleton. Syndecan-3 is specifically expressed in neuron cell and has related to neuron cell differentiation and development of actin filament in cell migration. Syndecans each have a unique, central, and variable (V) region in their cytoplasmic domains. And that region of syndecan-3 may modulate the interactions of the conserved C1 regions of the cytoplasmic domains by tyrosine phosphorylation. Cytoplasmic domain of syndecan-3 has been synthesized for NMR structural studies. The solution structure of syndecan-3 cytoplasmic domain has been determined by two-dimensional NMR spectroscopy and simulated-annealing calculation. The cytoplasmic domain of the syndecan proteins has a tendency to form a dimmer conformation with a central cavity, however, that of syndecan-3 demonstrated a monomer conformation with a flexible region near C-terminus. The structural information might add knowledge about the structure-function relationships among syndecan proteins.

Structure-Function of the TNF Receptor-like Cysteine-rich Domain of Osteoprotegerin

  • Shin, Joon;Kim, Young-Mee;Li, Song-Zhe;Lim, Sung-Kil;Lee, Weontae
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.352-357
    • /
    • 2008
  • Osteoprotegerin (OPG) is a soluble decoy receptor that inhibits osteoclastogenesis and is closely associated with bone resorption processes. We have designed and determined the solution structures of potent OPG analogue peptides, derived from sequences of the cysteine-rich domain of OPG. The inhibitory effects of the peptides on osteoclastogenesis are dose-dependent ($10^{-6}M-10^{-4}M$), and the activity of the linear peptide at $10^{-4}M$ is ten-fold higher than that of the cyclic OPG peptide. Both linear and cyclic peptides have a ${\beta}$-turn-like conformation and the cyclic peptide has a rigid conformation, suggesting that structural flexibility is an important factor for receptor binding. Based on structural and biochemical information about RANKL and the OPG peptides, we suggest that complex formation between the peptide and RANKL is mediated by both hydrophobic and hydrogen bonding interactions. These results provide structural insights that should aid in the design of peptidyl-mimetic inhibitors for treating metabolic bone diseases caused by abnormal osteoclast recruitment.

Protein Microarrays and Their Applications

  • Lee, Bum-Hwan;Teruyuki Nagamune
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.69-75
    • /
    • 2004
  • In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional I protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.

Advanced techniques of solution nuclear magnetic resonance spectroscopy for structural investigation of protein-protein interaction

  • Sugiki, Toshihiko;Lee, Young-Ho
    • 한국자기공명학회논문지
    • /
    • 제22권4호
    • /
    • pp.76-81
    • /
    • 2018
  • Investigation of the protein-protein interaction mode at atomic resolution is essential for understanding on the underlying functional mechanisms of proteins as well as for discovering druggable compounds blocking deleteriou interprotein interactions. Solution NMR spectroscopy provides accurate and precise information on intermolecular interactions even for weak and transient interactions, and it is also markedly useful for examining the change in the conformation and dynamics of target proteins upon binding events. In this mini-review, we comprehensively describe three unique and powerful methods of solution NMR spectroscopy, paramagnetic relaxation enhancement (PRE), pseudo-contact shift (PCS), and residual dipolar coupling (RDC), for the study on protein-protein interactions.