DOI QR코드

DOI QR Code

Construction of 19F-13C Solid-State NMR Probe for 400MHz Wide-Bore Magnet

  • Jeong, Ji-Ho (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Park, Yu-Geun (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Choi, Sung-Sub (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Kim, Yongae (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies)
  • Received : 2013.11.10
  • Accepted : 2013.12.18
  • Published : 2013.12.20

Abstract

Various fluorine-containing materials are used in electronic devices like LCD display panels and Li-ion batteries. The structural conformation of fluorine in fluorinated materials is an important contributing factor that influences the chemical and physical properties. The conformation can be changed by heat and stress during manufacture or use. Understanding the conformational changes is critical for understanding the performance and durability of electronic devices. Solid-state NMR spectroscopy could be widely used for the analysis of various fluorine-containing materials for electronic devices. However, conventional CPMAS probes cannot be used for in-situ analysis of fluorine-containing electronic devices like LCD panels and Li-ion batteries. In this paper, we show the design, construction, and optimization of a $^{19}F-^{13}C$ double-resonance solid-state NMR probe for a 400MHz wide-bore magnet with a flat square coil for in-situ analysis of fluorine-containing electronic devices without observing fluorine background signals. This custom-built probe does not show any fluorine background signals, and can have higher efficiency for lossy samples.

Keywords

References

  1. B. L. Farmer, A. J. Hopfinger, J. B. Lando, J. Appl. Phys. 43, 4293. (1972). https://doi.org/10.1063/1.1660919
  2. J. J. Reisinger, M. A. Hillmyer, Synthesis of fluorinated polymers by chemical modification, Prog. Polym. Sci. 27, 971. (2002). https://doi.org/10.1016/S0079-6700(02)00004-7
  3. A. Oshima, S. Ikeda, E. Katoh, Y. Tabata, Radiat. Phys. Chem. 62, 39. (2001). https://doi.org/10.1016/S0969-806X(01)00420-0
  4. R. Filler, R. Saha, Future Med. Chem. 1, 777. (2009). https://doi.org/10.4155/fmc.09.65
  5. P. Lesot, J. W. Emsley, J. M. Ouvrard, E. Curzon, J. Magn. Reson. 133, 166. (1998). https://doi.org/10.1006/jmre.1998.1452
  6. S. J. Opella, Y. A. Kim, K. G. Valentine, F. M. Marassi, M. Zasloff, J. Kor. Magn. Reson. 2, 120. (1998).
  7. Y. A. Kim, W. H. Lee, J. Kor. Magn. Reson. 1, 33. (1997).
  8. J. Brus, M. Urbanova, I. Sedenkova, H. Brusova, Int. J. Pharm. 62, 409. (2011).
  9. J. M. Griffin, J. R. Yates, A. J. Berry, S. Wimperis, S. E. Ashbrook, J. Am. Chem. Soc. 132. 15651 (2010). https://doi.org/10.1021/ja105347q
  10. T. J. Park, J.S. Kim, S. H. Um, Y. A. Kim, Bull. Kor. Chem. Soc. 5, 31. (2010).
  11. S. Ando, R. K. Harris, U. Scheler, Encylopedia of Nuclear Magnetic Resonance. 9, 531. (2002).
  12. S. S. Choi, J. H. Jeong, Y. G. Park, T. J. Park, G. H. J. Park, Y. A. Kim, Bull. Kor. Chem. Soc. 5, 33. (2012).
  13. F. D. Doty, J. Kulkarni, C. Turner, G. Entzminger, A. Bielecki, J. Magn. Reson. 182, 239. (2006). https://doi.org/10.1016/j.jmr.2006.06.031
  14. A. Jerschow, J. Magn. Reson. 145, 125. (2000). https://doi.org/10.1006/jmre.2000.2083
  15. R. Wimmer, G. Wider, J. Magn. Reson. 187, 184. (2007). https://doi.org/10.1016/j.jmr.2007.04.014

Cited by

  1. Ex-situ7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery vol.18, pp.2, 2014, https://doi.org/10.6564/JKMRS.2014.18.2.063