• 제목/요약/키워드: Protein Three-dimensional Structure

검색결과 119건 처리시간 0.027초

Ligand-Based Virtual Screening for inhibitors of PTP-1B with Antihyperglycemic properties

  • Kim, Heung-Jae;Yoo, Moo-Hi;Son, Mi-Won;Kim, Soon-Hoe
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.359.3-359.3
    • /
    • 2002
  • Protein-tyrosine phosphatase 1 B(PTP-l B). which plays a key role in insulin signaling. is rising as a fascinating target for type 2 diabetes and obesity. Many scientists in structural biology solved the three dimensional X-ray Crystal structure of this type of enzyme, so we could easily get the active site structure of PTP-1 B or complex structure with ligand. Our virtual screening study for PTP-1B exactly based on these crystal strucutures from public database. (omitted)

  • PDF

Optimization of Expression, Purification, and NMR Measurement for Structural Studies of Syndecan-4 Transmembrane Region

  • Park, Tae-Joon;Lee, Min-Hye;Choi, Sung-Sub;Kim, Yong-Ae
    • 한국자기공명학회논문지
    • /
    • 제15권1호
    • /
    • pp.25-39
    • /
    • 2011
  • Syndecan-4 is a transmembrane heparan sulfate proteoglycan, which is a coreceptor with integrins in cell adhesion. To get better understand the mechanism and function of Syndecan-4, it is critical to elucidate the three-dimensional structure of a single transmembrane spanning region of them. Unfortunately, it is hard to prepare the peptide because syndecan-4 is membrane-bound protein that transverse the lipid bilayer of the cell membrane. Generally, the preparation of transmembrane peptide sample is seriously difficult and time-consuming. In fact, high yield production of transmembrane peptides has been limited by experimental adversities of insufficient yields and low solubility of peptide. Here, we demonstrate experimental processes and results to optimize expression, purification, and NMR measurement condition of Syndecan-4 transmembrane peptide.

집누에(Bombyx mori)와 멧누에(Bombyx mandayina)의 종간교잡에 있어서 란각구조 및 Chorion 단백질 (Morphological and Biochemical Characterization of the Chorion in Interspecific Hybrid Between Bombyx mori and Bombyx mandarina)

  • 김종길;노시갑
    • 한국잠사곤충학회지
    • /
    • 제36권1호
    • /
    • pp.30-36
    • /
    • 1994
  • 집누에와 멧누에의 종간교잡에 의한 란각구조 및 chorion 단백질의 변이와 양 종간의 유연관계를 검토했다. 1. 교잡종 란의 측면부의 란각표면구조는 양 종이 모두 집누에와 유사한 그물상구조를 나타내지만 각각의 교잡 모체쪽의 구조와 유사했다. 2. 교잡종에서의 란각단면구조는 멧누에의 구조와 유사했으며 최외층인 덮개층은 측면부에서 주변부로 갈수록 더욱 뚜렷이 관찰되었다. 3. Chorion 단백질의 성분분석 결과 등전점이 4.0-6.5 분자량 10-50 kd 사이에 대부분의 성분이 검출되었으며 교잡종이 chorion 단백질성분은 영동 pattern, 성분수, 등전점 및 분자량 등에 있어서 교잡모체의 chorion 단백질과 유사했다.

  • PDF

Structural basis of novel TRP14, thioredoxin-related protein that regulates TNE-$\alpha$ signaling pathways

  • Woo, Joo-Rang;Jeong, Woo-Jin;Rhee, Sue-Goo;Ryu, Seong-Eon
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.18-18
    • /
    • 2003
  • Thioredoxin (Trx) is a small redox protein that is ubiquitously distributed from achaes to human. In diverse organisms, the protein is involved in various physiological roles by acting as electron donor and regulators of transcription and apoptosis as well as antioxidants. Sequences of Trx within various species are 27~69% identical to that of E. coli and all Trx proteins have the same overall fold, which consists of central five β strands surrounded by four α helices. The N-terminal cysteine in WCGPC motif of Trx is redox sensitive and the motif is highly conserved. Compared with general cysteine, the N-terminal cysteine has low pKa value. The result leads to increased reduction activity of protein. Recently, novel thio.edoxin-related protein (TRP14) was found from rat brain. TRP14 acts as disulfide reductase like Trx1, and its redox potential and pKa are similar to those of Trx1. However, TRP14 takes up electrons from cytosolic thioredoxin reductase (TrxR1), not from the mitochondrial thioredoxin reductase (TrxR2). Biological roles of TES14 were reported to be involved in regulating TNF-α induced signaling pathways in different manner with Trx1. In depletion experiments, depletion of TRP14 increased TNF-α induced phosphorylation and degradation of IκBα more than the depletion Trx1 did. It also facilitated activation of JNK and p38 MAP kinase induced by TNF-α. Unlike Trx1, TRP14 shows neither interaction nor interference with ASK1. Here, we determined three-dimensional crystal structure of TRP14 by MAD method at 1.8Å. The structure reveals that the conserved cis-Pro (Pro90) and active site-W-C-X-X-C motif, which may be involved in substrate recognition similar to Trx1 , are located at the beginning position of strand β4 and helix α2, respectively. The TRP14 structure also shows that surface of TRP14 in the vicinity of the active site, which is surrounded by an extended flexible loop and an additional short a helix, is different from that of Trx1. In addition, the structure exhibits that TRP14 interact with a distinct target proteins compared with Trx1 and the binding may depend mainly on hydrophobic and charge interactions. Consequently, the structure supports biological data that the TRP14 is involved in regulating TNF-α induced signaling pathways in different manner with Trx1.

  • PDF

Investigation of Binding Modes of the Verapamil and Curcumin into Human P-glycoprotein (P-gp)

  • Gadhe, Changdev G.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제6권4호
    • /
    • pp.205-210
    • /
    • 2013
  • Human P-gp is a protein responsible for the multidrug resistance (MDR) and causes failure of cancer chemotherapy. Till date no X-ray crystal structure is reported for this membrane protein, which hampers active research in the field. We performed homology modeling to develop three dimensional (3D) model of P-gp, and docking studies of the verapamil and curcumin have been performed to gain insight into the interaction mechanism between inhibitors and P-gp. It was identified that the inhibitors docked into the upper part of P-gp and interacted through the hydrophobic interactions.

The first insight into the structure of the Photosystem II reaction centre complex at $6{\AA}$ resolution determined by electron crystallography

  • Rhee, Kyong-Hi
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 Proceedings of the 17th Symposium on Plant Biology Environmental Stress and Photosynthesis
    • /
    • pp.83-90
    • /
    • 1999
  • Electron crystallography of two-dimensional crystalsand electron cryo-microscopy is becoming an established method for determining the structure and function of a variety of membrane proteins that are providing difficult to crystallize in three dimension. In this study this technique has been used to investigate the structure of a ~160 kDa reaction centre sub-core complex of photosystem II. Photosystem II is a photosynthetic membrane protein consisting of more than 25 subunits. It uses solar energy to split water releasing molecular oxygen into the atmosphere and creates electrochemical potential across the thylakoid membrane, which is eventually utilized to generate ATP and NADPH. Images were taken using Philips CM200 field emission gun electron microscope with an acceleration voltage of 200kW at liquid nitrogen temperature. In total, 79 images recorded dat tilt angles ranging from 0 to 67 degree yielded amplitudes and phases for a three-dimensional map with an in-plant resolution of 6$\AA$ and 11.4$\AA$ in the third dimension shows at least 23 transmembrane helices resolved in a monomeric complex, of which 18 were able to be assigned to the D1, D2, CP47 , and cytochrome b559 alfa beta-subunits with their associated pigments that ae active in electron transport (Rhee, 1998, Ph.D.thesis). The D1/D2 heterodimer is located in the central position within the complex and its helical scalffold is remarkably similar to that of the reaction centres not only in purple bacteria but also in plant photosystem I (PSI) , indicating a common evoluationary origin of all types of reaction centre in photosynthetic organism known today 9RHee et al. 1998). The structural homology is now extended to the inner antenna subunit, ascribed to CP47 in our map, where the 6 transmembrane helices show a striking structural similarity to the corresponding helices of the PSI reaction centre proteins. The overall arrangement of the chlorophylls in the D1 /D2 heterodimer, and in particular the distance between the central pair, is ocnsistent with the weak exciton coupling of P680 that distinguishes this reaction centre from bacterial counterpart. The map in most progress towards high resolution structure will be presented and discussed.

  • PDF

NMR Studies on Turn Mimetic Analogs Derived from Melanocyte-stimulating Hormones

  • Cho, Min-Kyu;Kim, Sung-Soo;Lee, Myung-Ryul;Shin, Joon;Lee, Ji-Yong;Lim, Sung-Kil;Baik, Ja-Hyun;Yoon, Chang-Ju;Shin, In-Jae;Lee, Weon-Tae
    • BMB Reports
    • /
    • 제36권6호
    • /
    • pp.552-557
    • /
    • 2003
  • Oligomers with $\alpha$-aminooxy acids are reported to form very stable turn and helix structures, and they are supposed to be useful peptidomimetics for drug design. A recent report suggested that homochiral oxa-peptides form a strong eight-member-ring structure by a hydrogen bond between adjacent aminooxy-acid residues in a $CDCl_3$ solution. In order to design an $\alpha$-MSH analog with a stable turn conformation, we synthesized four tetramers and one pentamer, based on $\alpha$-MSH sequence, and determined the solution structures of the molecules by two-dimensional NMR spectroscopy and simulated annealing calculations. The solution conformations of the three peptidomimetic molecules (TLV, TDV, and TLL) in DMSO-$d_6$ contain a stable 7-membered-ring structure that is similar to a $\gamma$-turn in normal peptides. Newly-designed tetramer TDF and pentamer PDF have a ball-type rigid structure that is induced by strong hydrogen bonds between adjacent amide protons and carbonyl oxygens. In conclusion, the aminooxy acids, easily prepared from natural or unnatural amino acids, can be employed to prepare peptidomimetic analogues with well-defined turn structures for pharmaceutical interest.

Expression and Purification of the Helicase-like Subdomains, H1 and H23, of Reverse Gyrase from A. fulgidus for Heteronuclear NMR study

  • Kwon, Mun-Young;Seo, Yeo-Jin;Lee, Yeon-Mi;Lee, Ae-Ree;Lee, Joon-Hwa
    • 한국자기공명학회논문지
    • /
    • 제19권2호
    • /
    • pp.95-98
    • /
    • 2015
  • Reverse gyrase is a hyperthermophile specific protein which introduces positive supercoils into DNA molecules. Reverse gyrase consists of an N-terminal helicase-like domain and a C-terminal topoisomerase domain. The helicase-like domain shares the three-dimensional structure with two tandem RecA-folds (H1 and H2), in which the subdomain H2 is interrupted by the latch domain (H3). To understand the physical property of the hyperthermophile-specific protein, two subdomains af_H1 and af_H23 have been cloned into E. coli expression vector, pET28a. The $^{15}N$-labeled af_H1 and af_H23 proteins were expressed and purified for heteronuclear NMR study. The af_H1 protein exhibits the well-dispersion of amide signals in its $^1H/^{15}N$-HSQC spectra and thus further NMR study continues to be progressed.

PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins

  • Kim, Do-Hyoung;Han, Kyou-Hoon
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.889-899
    • /
    • 2018
  • Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.

Homology Modeling of CCR 4: Novel Therapeutic Target and Preferential Maker for Th2 Cells

  • Shalini, M.;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.234-240
    • /
    • 2014
  • C-C chemokine receptor type 4 (CCR4) is a chemokine receptor with seven transmembrane helices and it belongs to the GPCR family. It plays an important role in asthma, lung disease, atopic dermatitis, allergic bronchopulmonary aspergillosis, cancer, inflammatory bowel disease, the mosquito-borne tropical diseases, such as dengue fever and allergic rhinitis. Because of its role in wide spectrum of disease processes, CCR4 is considered to be an important drug target. Three dimensional structure of the protein is essential to determine the functions. In the present study homology modeling of human CCR4 was performed based on crystal structure of CCR5 chemokine receptor. The generated models were validated using various parameters. Among the generated homology models the best one is selected based on validation result. The model can be used for performing further docking studies to identifying the critical interacting residues.