DOI QR코드

DOI QR Code

PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins

  • Kim, Do-Hyoung (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Han, Kyou-Hoon (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2018.05.02
  • Accepted : 2018.08.22
  • Published : 2018.10.31

Abstract

Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.

Keywords

References

  1. Andresen, C., Helander, S., Lemak, A., Fares, C., Csizmok, V., Carlsson, J., Penn, L.Z., Forman-Kay, J.D., Arrowsmith, C.H., Lundstrom, P., et al. (2012). Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res. 40, 6353-6366. https://doi.org/10.1093/nar/gks263
  2. Arai, M., Sugase, K., Dyson, H.J., and Wright, P.E. (2015). Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc. Natl. Acad. Sci. USA 112, 9614-9619. https://doi.org/10.1073/pnas.1512799112
  3. Atwal, R.S., Xia, J., Pinchev, D., Taylor, J., Epand, R.M., and Truant, R. (2007). Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 2600-2615. https://doi.org/10.1093/hmg/ddm217
  4. Baker, J.M., Hudson, R.P., Kanelis, V., Choy, W.Y., Thibodeau, P.H., Thomas, P.J., and Forman-Kay, J.D. (2007). CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738-745. https://doi.org/10.1038/nsmb1278
  5. Baldwin, R.L., and Zimm, B.H. (2000). Are denatured proteins ever random coils? Proc Natl Acad Sci U S A. 97, 12391-12392. https://doi.org/10.1073/pnas.97.23.12391
  6. Benison, G., Nyarko, A., and Barbar, E. (2006). Heteronuclear NMR identifies a nascent helix in intrinsically disordered dynein intermediate chain: implications for folding and dimerization. J. Mol. Biol. 362, 1082-1093. https://doi.org/10.1016/j.jmb.2006.08.006
  7. Benison, G., Berkholz, D.S., and Barbar, E. (2007). Protein assignments without peak lists using higher-order spectra. J. Magn. Reson. 189, 173-181. https://doi.org/10.1016/j.jmr.2007.09.009
  8. Bernado, P., Bertoncini, C.W., Griesinger, C., Zweckstetter, M., and Blackledge, M. (2005). Defining long-range order and local disorder in native alpha-synuclein using residual dipolar couplings. J. Am. Chem. Soc. 127, 17968-17969. https://doi.org/10.1021/ja055538p
  9. Bibow, S., Mukrasch, M.D., Chinnathambi, S., Biernat, J., Griesinger, C., Mandelkow, E., and Zweckstetter, M. (2011). The Dynamic Structure of Filamentous Tau. Angew. Chem. Int. Ed. Engl. 50, 11520-11524. https://doi.org/10.1002/anie.201105493
  10. Bienkiewicz, E.A., Adkins, J.N., and Lumb, K.J. (2002). Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41, 752-759. https://doi.org/10.1021/bi015763t
  11. Boettcher, J.M., Hartman, K.L., Ladror, D.T., Qi, Z., Woods, W.S., George, J.M., and Rienstra, C.M. (2008). Membrane-induced folding of the cAMP-regulated phosphoprotein endosulfine-alpha. Biochemistry 47, 12357-12364. https://doi.org/10.1021/bi801450t
  12. Boettcher, J.M., Hartman, K.L., Ladror, D.T., Qi, Z., Woods, W.S., George, J.M., and Rienstra, C.M. (2007). (1)H, (13)C, and (15)N resonance assignment of the cAMP-regulated phosphoprotein endosulfine-alpha in free and micelle-bound states. Biomol. NMR Assign. 1, 167-169. https://doi.org/10.1007/s12104-007-9063-7
  13. Borcherds, W., Theillet, F.X., Katzer, A., Finzel, A., Mishall, K.M., Powell, A.T., Wu, H., Manieri, W., Dieterich, C., Selenko, P., Loewer, A., and Daughdrill, G.W. (2014). Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000-1002. https://doi.org/10.1038/nchembio.1668
  14. Borgia, A., Borgia, M.B., Bugge, K., Kissling, V.M., Heidarsson, P.O., Fernandes, C.B., Sottini, A., Soranno, A., Buholzer, K.J., Nettels, D., Kragelund, B.B., Best, R.B., and Schuler, B. (2018). Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61-66. https://doi.org/10.1038/nature25762
  15. Bourhis, J.M., Johansson, K., Receveur-Brechot, V., Oldfield, C.J., Dunker, K.A., Canard, B., and Longhi, S. (2004). The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon bind. to their physiological partner. Virus Res. 99, 157-167. https://doi.org/10.1016/j.virusres.2003.11.007
  16. Botuyan, M.V., Momand, J., and Chen, Y. (1997). Solution conformation of an essential region of the p53 transactivation domain. Fold Des. 2, 331-342. https://doi.org/10.1016/S1359-0278(97)00047-3
  17. Braeuning, A. (2013). The connection of ${\beta}$-catenin and phenobarbital in murine hepatocarcinogenesis: a critical discussion of Awuah et al., PLoS ONE 7, e39771. Arch. Toxicol. 87, 401-402. https://doi.org/10.1007/s00204-012-1002-4
  18. Buchko, G.W., Ni, S., Lourette, N.M., Reeves, R., and Kennedy, M.A. (2007). NMR resonance assignments of the human high mobility group protein HMGA1. J. Biomol. NMR. 38, 185. https://doi.org/10.1007/s10858-006-9116-8
  19. Chang, J., Kim, D.H., Lee, S.W., Choi, K.Y., and Sung, Y.C. (1995). Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J. Biol. Chem. 270, 25014-25019. https://doi.org/10.1074/jbc.270.42.25014
  20. Chavali, S., Gunnarsson, A., and Babu, M.M., (2017). Intrinsically disordered proteins adaptively reorganize cellular matter during stress. Trends Biochem. Sci. 42, 410-412. https://doi.org/10.1016/j.tibs.2017.04.007
  21. Cheng, Y., LeGall, T., Oldfield, C.J., Dunker, A.K., and Uversky, V.N. (2006). Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45, 10448-10460. https://doi.org/10.1021/bi060981d
  22. Chi, S.W., Lee, S.H., Kim, D.H., Ahn, M.J., Kim, J.S., Woo, J.Y., Torizawa, T., Kainosho, M., and Han, K. H. (2005). Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795-38802. https://doi.org/10.1074/jbc.M508578200
  23. Chi, S.W., Kim, D.H., Lee, S.H., Chang, I., and Han, K.H. (2007). Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci. 10, 2108-2117.
  24. Chumakov, P.M. (2007). Versatile functions of p53 protein in multicellular organisms. Biochemistry 72, 1399-1421.
  25. Csizmok, V., Felli, I.C., Tompa, P., Banci, L., and Bertini, I. (2008). Structural and dynamic characterization of intrinsically disordered human securin by NMR spectroscopy. J. Am. Chem. Soc. 130, 16873-16879. https://doi.org/10.1021/ja805510b
  26. Dancheck, B., Nairn, A.C., and Peti, W. (2008). Detailed structural characterization of unbound protein phosphatase 1 inhibitors. Biochemistry 47, 12346-12356. https://doi.org/10.1021/bi801308y
  27. Daughdrill, G.W., Chadsey, M.S., Karlinsey, J.E., Hughes, K.T., and Dahlquist, F.W. (1997). The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma 28. Nat. Struct. Biol. 4, 285-291. https://doi.org/10.1038/nsb0497-285
  28. Domanski, M., Hertzog, M., Coutant, J., Gutsche-Perelroizen, I., Bontems, F., Carlier, M.F., Guittet, E., and van Heijenoort, C. (2004). Coupling of folding and binding of thymosin beta4 upon interaction with monomeric actin monitored by nuclear magnetic resonance. J. Biol. Chem. 279, 23637-23645. https://doi.org/10.1074/jbc.M311413200
  29. Drysdale, C.M., Duenas, E., Jackson, B.M., Reusser, U., Braus, G.H., and Hinnebusch, A.G. (1995). The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell Biol. 15, 1220-1233. https://doi.org/10.1128/MCB.15.3.1220
  30. Dunker, A.K., Babu, M.M., Barbar, E., Blackledge, M., Bondosm, S.E., Dosztanyi, Z., Dyson, H.J., Forman-Kay, J., Fuxreiter, M., Gsponer, J., Han, K.H., Jones, D.T., Longhi, S., Metallo, S.J., Nishikawa, K., Nussinov, R., Obradovic, Z., Pappu, R.V., Rost, B., Selenko, P., Subramaniam, V., Sussman, J.L., Tompa, P., and Uversky, V.N. (2013). What's in a name? Why these proteins are intrinsically disordered. Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins 1, e24157. https://doi.org/10.4161/idp.24157
  31. Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C., and Brown, C.J. (2000). Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform. 11, 161-171.
  32. Dyson, H.J., and Wright, P.E. (2002). Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54-60. https://doi.org/10.1016/S0959-440X(02)00289-0
  33. Eliezer, D., Kutluay, E., Bussell, R. Jr., and Browne, G., (2001). Conformational properties of a-synuclein in its free and lipidassociated states. J. Mol. Biol. 307, 1061-1073. https://doi.org/10.1006/jmbi.2001.4538
  34. Feuerstein, S., Solyom, Z., Aladag, A., Favier, A., Schwarten, M., Hoffmann, S., Willbold, D., and Brutscher, B. (2012). Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J. Mol. Biol. 420, 310-323. https://doi.org/10.1016/j.jmb.2012.04.023
  35. Fletcher, C.M., and Wagner, G. (1998). The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci. 7, 1639-1642. https://doi.org/10.1002/pro.5560070720
  36. Follis, A.V., Hammoudeh, D.I., Wang, H., Prochownik, E.V., and Metallo, S.J. (2008). Structural rationale for the coupled binding and unfolding of the c-myc oncoprotein by small molecules. Chem. Biol. 15, 1149-1155. https://doi.org/10.1016/j.chembiol.2008.09.011
  37. Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004). Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015-1026. https://doi.org/10.1016/j.jmb.2004.03.017
  38. Galea, C.A., Wang, Y., Sivakolundu, S.G., and Kriwacki, R.W., (2008). Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47, 7598-7609. https://doi.org/10.1021/bi8006803
  39. Geyer, M., Munte, C.E., Schorr, J., Kellner, R., and Kalbitzer, H.R. (1999). Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J. Mol. Biol. 289, 123-138. https://doi.org/10.1006/jmbi.1999.2740
  40. Giniger, E., and Ptashne, M. (1987). Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature 330, 670-672. https://doi.org/10.1038/330670a0
  41. Greenfield, N.J., Kostyukova, A.S., and Hitchcock-DeGregori, S.E. (2005). Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. Biophys. J. 88, 372-383. https://doi.org/10.1529/biophysj.104.051128
  42. Hazzard, J., Sudhof, T.C., and Rizo, J. (1999). NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J. Biomol. NMR. 14, 203-207. https://doi.org/10.1023/A:1008382027065
  43. Hong, W., Jiao, W., Hu, J., Zhang, J., Liu, C., Fu, X., Shen, D., Xia, B., and Chang, Z. (2005). Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J. Biol. Chem. 280, 27029-27034. https://doi.org/10.1074/jbc.M503934200
  44. Hua, Q.X., Jia, W.H., Bullock, B.P., Habener, J.F., and Weiss, M.A. (1998). Transcriptional activator-coactivator recognition: nascent folding of kinase-inducible transcativation domain predicts its structure on coactivator binding. Biochemistry 37, 5858-5866. https://doi.org/10.1021/bi9800808
  45. Iesmantavicius, V., Dogan, J., Jemth, P., Teilum, K., and Kjaergaard, M. (2014). Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angew. Chem. Int. Ed. Engl. 53, 1548-1551. https://doi.org/10.1002/anie.201307712
  46. James, T.L., Liu, H., Ulyanov, N.B., Farr-Jones, S., Zhang, H., Donne, D.G., Kaneko, K., Groth, D., Mehlhorn, I., Prusiner, S.B., and Cohen, F.E. (1997). Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10086-10091. https://doi.org/10.1073/pnas.94.19.10086
  47. Jensen, M.R., Houben, K., Lescop, E., Blanchard, L., Ruigrok, R.W., and Blackledge, M. (2008). Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein. J. Am. Chem. Soc. 130, 8055-8061. https://doi.org/10.1021/ja801332d
  48. Jonker, H.R., Wechselberger, R.W., Boelens, R., Folkers, G.E., and Kaptein, R. (2005). Structural properties of the promiscuous VP16 activation domain. Biochemistry 25, 827-839.
  49. Kim, D.H., Lee, S.H., Chi, S.W., Nam, K.H., and Han, K.H. (2009a). Backbone resonance assignment of a proteolysis-resistant fragment in the oxygen-dependent degradation domain of the hypoxia inducible factor $1{\alpha}$. Mol. Cells 27, 493-496. https://doi.org/10.1007/s10059-009-0065-4
  50. Kim, D.H., Lee, C., Lee, S.H., Kim, K.T., Han, J.J., Cha, E.J., Lim, J.E., Cho, Y.J., Hong, S.H., and Han, K.H. (2017a). The Mechanism of p53 Rescue by SUSP4. Angew. Chem. Int. Ed. Engl. 56, 1278-1282. https://doi.org/10.1002/anie.201607819
  51. Kim, D.H., Lee, S.H., Nam, K.H., Chi, S.W., Chang, I., and Han, K.H. (2009b). Multiple hTAF(II)31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16. BMB Rep. 42, 411-417. https://doi.org/10.5483/BMBRep.2009.42.7.411
  52. Kim, D.H., Lee, C., Cho, Y.J., Lee, S.H., Cha, E.J., Lim, J.E., Sabo, T.M., Griesinger, C., Lee, D., and Han, K.H. (2015). A pre-structured helix in the intrinsically disordered 4EBP1. Mol. BioSyst. 11, 366-369. https://doi.org/10.1039/C4MB00532E
  53. Kim, D.H., Wright, A., and Han, K.H. (2017b). An NMR study on the intrinsically disordered core transactivation domain of human glucocorticoid receptor. BMB Rep. 10, 522-527.
  54. Kunze, G., Barre, P., Scheidt, H.A., Thomas, L., Eliezer, D., and Huster, D. (2012). Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Biochim. Biophys. Acta. 1818, 2302-2313. https://doi.org/10.1016/j.bbamem.2012.03.019
  55. Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J., and Pavletich, N.P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953. https://doi.org/10.1126/science.274.5289.948
  56. Laptenki, O., and Prives, C. (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951-961. https://doi.org/10.1038/sj.cdd.4401916
  57. Lavery, D.N., and McEwan, I.J. (2008) Structural characterization of the native NH2-terminal transactivation domain of the human androgen receptor: a collapsed disordered conformation underlies structural plasticity and protein-induced folding. Biochemistry 47, 3360-3369. https://doi.org/10.1021/bi702221e
  58. Lee, C., Kim, D.H., Lee, S.H., Su, J., and Han, K.H. (2016). Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein. BMB Rep. 49, 431-436. https://doi.org/10.5483/BMBRep.2016.49.8.021
  59. Lee, H., Mok, K.H., Muhandiram, R., Park, K.H., Suk, J.E., Kim, D.H., Chang, J., Sung, Y.C., Choi, K.Y., and Han, K.H. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426-29432. https://doi.org/10.1074/jbc.M003107200
  60. Lee, K.H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., Maxwell, B.A., Kim, N.C., Temirov, J., Moore, J., Kolaitis, R.M., Shaw, T.I., Bai, B., Peng, J., Kriwacki, R.W., and Taylor, J.P. (2016). C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 167, 774-788. https://doi.org/10.1016/j.cell.2016.10.002
  61. Lee, S.H., Kim, D.H., Han, J.J., Cha, E.J., Lim, J.E., Cho, Y.J., Lee, C., and Han, K.H. (2012). Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins. Curr. Protein Pept. Sci. 13, 34-54. https://doi.org/10.2174/138920312799277974
  62. Liu, H., Farr-Jones, S., Ulyanov, N.B., Llinas, M., Marqusee, S., Groth, D., Cohen, F.E., Prusiner, S.B., and James, T.L. (1999). Solution Structure of Syrian Hamster Prion Protein rPrP(90-231). Biochemistry 38, 5362-5377. https://doi.org/10.1021/bi982878x
  63. Liang, Y., Ye, H., Kang, C.B., and Yoon, H.S. (2007). Domain 2 of nonstructural protein 5A (NS5A) of hepatitis C virus is natively unfolded. Biochemistry 46, 11550-11558. https://doi.org/10.1021/bi700776e
  64. Lukhele, S., Bah, A., Lin, H., Sonenberg, N., and Forman-Kay, J.D. (2013). Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. Structure 21, 2186-2196. https://doi.org/10.1016/j.str.2013.08.030
  65. Lum, J.K., Neuweiler, H., and Fersht, A.R. (2012). Long-range modulation of chain motions within the intrinsically disordered transavctivation of tumor supressor p53. J. Am. Chem. Soc. 124, 1617-1622.
  66. Marsh, J.A., Singh, V.K, Jia, Z., and Forman-Kay, J.D. (2006). Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: Implications for fibrillation. Protein Sci. 15, 2795-2804. https://doi.org/10.1110/ps.062465306
  67. Metallo, S.J. (2010). Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14, 481-488. https://doi.org/10.1016/j.cbpa.2010.06.169
  68. Midic, U., Oldfield, C.J., Dunker, A.K., Obradovic, Z., and Uversky, V.N. (2009). Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics. 10, S12.
  69. Miron, S., Duchambon, P., Blouquit, Y., Durand, D., and Craescu, C.T. (2008). The carboxy-terminal domain of xeroderma pigmentosum complementation group C protein, involved in TFIIH and centrin binding, is highly disordered. Biochemistry 47, 1403-1413. https://doi.org/10.1021/bi701863u
  70. Mittag, T., Orlicky, S., Choy, W.Y., Tang, X., Lin, H., Sicheri, F., Kay, L.E., Tyers, M., and Forman-Kay, J.D. (2008). Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc. Natl. Acad. Sci. USA 105, 17772-17777. https://doi.org/10.1073/pnas.0809222105
  71. Mohan, A., Oldfield, C.J., Radivojac, P., Vacic, V., Cortese, M.S., Dunker, A.K., and Uversky, V.N. (2006). Analysis of Molecular Recognition Features (MoRFs). J. Mol. Biol. 362, 1043-1059. https://doi.org/10.1016/j.jmb.2006.07.087
  72. Mukrasch, M.D., Bibow, S., Korukottu, J., Jeganathan, S., Biernat, J., Griesinger, C., Mandelkow, E., and Zweckstetter, M. (2009). Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 7, e34.
  73. Murrali, M.G., Schiavina, M., Sainati, V., Bermel, W., Pierattelli, R., and Felli, I.C. (2018). $^{13}C$ APSY-NMR for sequential assignment of intrinsically disordered proteins. J. Biomol. NMR. 70, 167-175. https://doi.org/10.1007/s10858-018-0167-4
  74. Neri, D., Billeter, M., Wider, G., and Wuthrich, K. (1992). NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science 257, 1559-1563. https://doi.org/10.1126/science.1523410
  75. Newcombe, E.A., Ruff, K.M., Sethi, A., Ormsby, A.R., Ramdzan, Y.M., Fox, A., Purcell, A.W., Gooley, P.R., Pappu, R.V., and Hatters, D.M. (2018). Tadpole-like conformations of huntingtin exon 1 are characterized by conformational heterogeneity that persists regardless of polyglutamine length. J. Mol. Biol. 430, 1442-1458. https://doi.org/10.1016/j.jmb.2018.03.031
  76. Noval, M.G., Gallo, M., Perrone, S., Salvay, A.G., Chemes, L.B., and de Prat-Gay, G. (2013). Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation. PLoS One 8, e72760. https://doi.org/10.1371/journal.pone.0072760
  77. O'Hare, P., and Williams, G. (1992). Structural studies of the acidic transactivation domain of the Vmw65 protein of herpes simplex virus using 1H NMR. Biochemistry 31, 4150-4156. https://doi.org/10.1021/bi00131a035
  78. Oldfield, C.J., Cheng, Y., Cortese, M.S., Romero, P., Uversky, V.N., and Dunker, A.K. (2005). Coupled folding and binding with alpha-helix forming molecular recognition elements. Biochemistry 44, 12454-12470. https://doi.org/10.1021/bi050736e
  79. Pavletich, N.P. (1999). Mechanisms of cyclin-dependent kinase regulation: structures of cdks, their cyclin activators, and cip and INK4 inhibitors, J. Mol. Biol, 287, 821-828. https://doi.org/10.1006/jmbi.1999.2640
  80. Piai, A., Calcada, E.O., Tarenzi, T., Grande, A.D., Varadi, M., Tompa, P., Felli, I.C., and Pierattelli, R. (2016). Just a Flexible Linker? The structural and dynamic properties of CBP-ID4 revealed by NMR spectroscopy. Biophys. J. 110, 372-381. https://doi.org/10.1016/j.bpj.2015.11.3516
  81. Radivojac, P., Iakoucheva, L.M., Oldfield, C.J., Obradovic, A., Uversky, V.N., and Dunker, A.K. (2007). Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439-1456. https://doi.org/10.1529/biophysj.106.094045
  82. Radhakrishnan, I., Perez-Alvarado, G.C., Parker, D., Dyson, H.J., Montminy, M.R., and Wright, P.E. (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752. https://doi.org/10.1016/S0092-8674(00)80463-8
  83. Radhakrishnan, I., Perez-Alvarado, G.C., Dyson, H.J., and Wright, P.E. (1998). Conformational preferences in the Ser133-phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Lett. 430, 317-322. https://doi.org/10.1016/S0014-5793(98)00680-2
  84. Ramelot, T.A., Gentile, L.N., and Nicholson, L.K. (2000). Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725. https://doi.org/10.1021/bi992580m
  85. Reingewertz, T.H., Benyamini, H., Lebendiker, M., Shalev, D.E., and Friedler, A. (2009). The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Protein Eng. Des. Sel. 22, 281-287. https://doi.org/10.1093/protein/gzp004
  86. Rudolph, M.G., Bayer, P., Abo, A., Kuhlmann, J., Vetter, I.R., and Wittinghofer, A. (1998). The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. Chem. 273, 18067-18076. https://doi.org/10.1074/jbc.273.29.18067
  87. Salamanova, E., Costeira-Paulo, J., Han, K.H., Kim, D.H., Nilsson, L., and Wright, A.P.H. (2018). A subset of functional adaptation mutations alter propensity for ${\alpha}$-helical conformation in the intrinsically disordered glucocorticoid receptor tau1core activation domain. Biochim. Biophys. Acta. 1862, 1452-1461. https://doi.org/10.1016/j.bbagen.2018.03.015
  88. Sayers, E.W., Gerstner, R.B., Draper, D.E., and Torchia, D.A. (2000). Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 39, 13602-13613. https://doi.org/10.1021/bi0013391
  89. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 3, 721-732. https://doi.org/10.1038/nrc1187
  90. Sherr, C.J. (2004). Principles of tumor suppression. Cell 116, 235-246. https://doi.org/10.1016/S0092-8674(03)01075-4
  91. Solyom, Z., Ma, P., Schwarten, M., Bosco, M., Polidori, A., Durand, G., Willbold, D., and Brutscher, B. (2015). The Disordered Region of the HCV Protein NS5A: Conformational Dynamics, SH3 Binding, and Phosphorylation. Biophys. J. 109, 1483-1496. https://doi.org/10.1016/j.bpj.2015.06.040
  92. Sugase, K., Dyson, H.J., and Wright, P.E. (2007). Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021-1025. https://doi.org/10.1038/nature05858
  93. Sung, Y.H., and Eliezer, D. (2007). Residual structure, backbone dynamics, and interactions within the synuclein family. J. Mol. Biol. 372, 689-707. https://doi.org/10.1016/j.jmb.2007.07.008
  94. Thapar, R., Mueller, G.A., and Marzluff, W.F. (2004). The N-terminal domain of the Drosophila histone mRNA binding protein, SLBP, is intrinsically disordered with nascent helical structure. Biochemistry 43, 9390-9400. https://doi.org/10.1021/bi036314r
  95. To, V., Dzananovic, E., McKenna, S.A., and O'Neil, J. (2016). The Dynamic Landscape of the Full-Length HIV-1 Transactivator of Transcription. Biochemistry 55, 1314-1325. https://doi.org/10.1021/acs.biochem.5b01178
  96. Uesugi, M., Nyanguile, O., Lu, H., Levine, A.J., and Verdine, G.L. (1997). Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277, 1310-1313. https://doi.org/10.1126/science.277.5330.1310
  97. Uversky, V.N. (2015). Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J. 282, 1182-1189. https://doi.org/10.1111/febs.13202
  98. Uversky, V.N., and Dunker, A.K. (2010). Understanding protein non-folding. Biochim. Biophys. Acta. 1804, 1231-1264. https://doi.org/10.1016/j.bbapap.2010.01.017
  99. van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E., and Babu, M.M. (2014). Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589-6631. https://doi.org/10.1021/cr400525m
  100. Van Hoy, M., Leuther, K.K., Kodadek, T., and Johnston, S.A. (1993). The acidic activation domains of the GCN4 and GAL4 proteins are not alpha helical but form beta sheets. Cell 72, 587-594. https://doi.org/10.1016/0092-8674(93)90077-4
  101. Wells, M., Tidow, H., Rutherford, T.J., Markwick, P., Jensen, M.R., Mylonas, E., Svergun, D.I., Blackledge, M., and Fersht, A.R. (2008). Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. USA 105, 5762-5767. https://doi.org/10.1073/pnas.0801353105
  102. Xu, H., Ye, H., Osman, N.E., Sadler, K., Won, E.Y., Chi, S.W., and Yoon, H.S. (2009). The MDM2-binding region in the transactivation domain of p53 also acts as a Bcl-X(L)-binding motif. Biochemistry 48, 12159-12168. https://doi.org/10.1021/bi901188s
  103. Zhang, X., Perugini, M.A., Yao, S., Adda, C.G., Murphy, V.J., Low, A., Anders, R.F., and Norton, R. S. (2008). Solution conformation, backbone dynamics and lipid interactions of the intrinsically unstructured malaria surface protein MSP2. J. Mol. Biol. 379, 105-121. https://doi.org/10.1016/j.jmb.2008.03.039
  104. Zhao, X., Georgieva, B., Chabes, A., Domkin, V., Ippel, J.H., Schleucher, J., Wijmenga, S., Thelander, L., and Rothstein, R. (2000). Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality. Mol. Cell Biol. 23, 9076-9083.
  105. Zheng, Z., Ma, D., Yahr, T.L., and Chen, L. (2012). The transiently ordered regions in intrinsically disordered ExsE are correlated with structural elements involved in chaperone vinding. Biochem. Biophys. Res. Commun. 417, 129-134. https://doi.org/10.1016/j.bbrc.2011.11.070
  106. Zitzewitz, J.A., Ibarra-Molero, B., Fishel, D.R., Terry, K.L., and Matthews, C.R. (2000). Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J. Mol. Biol. 296, 1105-1116. https://doi.org/10.1006/jmbi.2000.3507
  107. Zor, T., Mayr, B.M., Dyson, H.J., Montminy, M.R., and Wright, P.E. (2002). Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators. J. Biol. Chem. 277, 42241-42248. https://doi.org/10.1074/jbc.M207361200

Cited by

  1. Transient Secondary Structures as General Target-Binding Motifs in Intrinsically Disordered Proteins vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113614
  2. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics vol.7, pp.2296-424X, 2019, https://doi.org/10.3389/fphy.2019.00010
  3. Salient Features of Monomeric Alpha-Synuclein Revealed by NMR Spectroscopy vol.10, pp.3, 2018, https://doi.org/10.3390/biom10030428
  4. Targeting Intrinsically Disordered Proteins through Dynamic Interactions vol.10, pp.5, 2018, https://doi.org/10.3390/biom10050743
  5. Analysis of Protein Disorder Predictions in the Light of a Protein Structural Alphabet vol.10, pp.7, 2018, https://doi.org/10.3390/biom10071080
  6. Interplay of Structural Disorder and Short Binding Elements in the Cellular Chaperone Function of Plant Dehydrin ERD14 vol.9, pp.8, 2020, https://doi.org/10.3390/cells9081856
  7. Electrostatic interactions in molecular recognition of intrinsically disordered proteins vol.38, pp.16, 2020, https://doi.org/10.1080/07391102.2019.1692073
  8. Liquid–Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus–Host Interactions vol.21, pp.23, 2018, https://doi.org/10.3390/ijms21239045
  9. Capturing nested information from disordered peptide phases vol.113, pp.2, 2018, https://doi.org/10.1002/pep2.24215