Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0192

PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins  

Kim, Do-Hyoung (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology)
Han, Kyou-Hoon (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology)
Abstract
Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.
Keywords
IDPs; IDR (Intrinsically Disordered Region); NMR; IUPs (Intrinsically Unfolded Proteins); PreSMos (Pre-Structured Motifs);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Boettcher, J.M., Hartman, K.L., Ladror, D.T., Qi, Z., Woods, W.S., George, J.M., and Rienstra, C.M. (2007). (1)H, (13)C, and (15)N resonance assignment of the cAMP-regulated phosphoprotein endosulfine-alpha in free and micelle-bound states. Biomol. NMR Assign. 1, 167-169.   DOI
2 Baker, J.M., Hudson, R.P., Kanelis, V., Choy, W.Y., Thibodeau, P.H., Thomas, P.J., and Forman-Kay, J.D. (2007). CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738-745.   DOI
3 Galea, C.A., Wang, Y., Sivakolundu, S.G., and Kriwacki, R.W., (2008). Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47, 7598-7609.   DOI
4 Botuyan, M.V., Momand, J., and Chen, Y. (1997). Solution conformation of an essential region of the p53 transactivation domain. Fold Des. 2, 331-342.   DOI
5 Borcherds, W., Theillet, F.X., Katzer, A., Finzel, A., Mishall, K.M., Powell, A.T., Wu, H., Manieri, W., Dieterich, C., Selenko, P., Loewer, A., and Daughdrill, G.W. (2014). Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000-1002.   DOI
6 Borgia, A., Borgia, M.B., Bugge, K., Kissling, V.M., Heidarsson, P.O., Fernandes, C.B., Sottini, A., Soranno, A., Buholzer, K.J., Nettels, D., Kragelund, B.B., Best, R.B., and Schuler, B. (2018). Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61-66.   DOI
7 Bourhis, J.M., Johansson, K., Receveur-Brechot, V., Oldfield, C.J., Dunker, K.A., Canard, B., and Longhi, S. (2004). The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon bind. to their physiological partner. Virus Res. 99, 157-167.   DOI
8 Greenfield, N.J., Kostyukova, A.S., and Hitchcock-DeGregori, S.E. (2005). Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. Biophys. J. 88, 372-383.   DOI
9 Geyer, M., Munte, C.E., Schorr, J., Kellner, R., and Kalbitzer, H.R. (1999). Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J. Mol. Biol. 289, 123-138.   DOI
10 Giniger, E., and Ptashne, M. (1987). Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature 330, 670-672.   DOI
11 Hazzard, J., Sudhof, T.C., and Rizo, J. (1999). NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J. Biomol. NMR. 14, 203-207.   DOI
12 Hong, W., Jiao, W., Hu, J., Zhang, J., Liu, C., Fu, X., Shen, D., Xia, B., and Chang, Z. (2005). Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J. Biol. Chem. 280, 27029-27034.   DOI
13 Hua, Q.X., Jia, W.H., Bullock, B.P., Habener, J.F., and Weiss, M.A. (1998). Transcriptional activator-coactivator recognition: nascent folding of kinase-inducible transcativation domain predicts its structure on coactivator binding. Biochemistry 37, 5858-5866.   DOI
14 Iesmantavicius, V., Dogan, J., Jemth, P., Teilum, K., and Kjaergaard, M. (2014). Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angew. Chem. Int. Ed. Engl. 53, 1548-1551.   DOI
15 Lum, J.K., Neuweiler, H., and Fersht, A.R. (2012). Long-range modulation of chain motions within the intrinsically disordered transavctivation of tumor supressor p53. J. Am. Chem. Soc. 124, 1617-1622.
16 Liu, H., Farr-Jones, S., Ulyanov, N.B., Llinas, M., Marqusee, S., Groth, D., Cohen, F.E., Prusiner, S.B., and James, T.L. (1999). Solution Structure of Syrian Hamster Prion Protein rPrP(90-231). Biochemistry 38, 5362-5377.   DOI
17 Liang, Y., Ye, H., Kang, C.B., and Yoon, H.S. (2007). Domain 2 of nonstructural protein 5A (NS5A) of hepatitis C virus is natively unfolded. Biochemistry 46, 11550-11558.   DOI
18 Lukhele, S., Bah, A., Lin, H., Sonenberg, N., and Forman-Kay, J.D. (2013). Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. Structure 21, 2186-2196.   DOI
19 Zitzewitz, J.A., Ibarra-Molero, B., Fishel, D.R., Terry, K.L., and Matthews, C.R. (2000). Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J. Mol. Biol. 296, 1105-1116.   DOI
20 Zheng, Z., Ma, D., Yahr, T.L., and Chen, L. (2012). The transiently ordered regions in intrinsically disordered ExsE are correlated with structural elements involved in chaperone vinding. Biochem. Biophys. Res. Commun. 417, 129-134.   DOI
21 Zor, T., Mayr, B.M., Dyson, H.J., Montminy, M.R., and Wright, P.E. (2002). Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators. J. Biol. Chem. 277, 42241-42248.   DOI
22 Chavali, S., Gunnarsson, A., and Babu, M.M., (2017). Intrinsically disordered proteins adaptively reorganize cellular matter during stress. Trends Biochem. Sci. 42, 410-412.   DOI
23 Braeuning, A. (2013). The connection of ${\beta}$-catenin and phenobarbital in murine hepatocarcinogenesis: a critical discussion of Awuah et al., PLoS ONE 7, e39771. Arch. Toxicol. 87, 401-402.   DOI
24 Buchko, G.W., Ni, S., Lourette, N.M., Reeves, R., and Kennedy, M.A. (2007). NMR resonance assignments of the human high mobility group protein HMGA1. J. Biomol. NMR. 38, 185.   DOI
25 Chang, J., Kim, D.H., Lee, S.W., Choi, K.Y., and Sung, Y.C. (1995). Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J. Biol. Chem. 270, 25014-25019.   DOI
26 Miron, S., Duchambon, P., Blouquit, Y., Durand, D., and Craescu, C.T. (2008). The carboxy-terminal domain of xeroderma pigmentosum complementation group C protein, involved in TFIIH and centrin binding, is highly disordered. Biochemistry 47, 1403-1413.   DOI
27 Marsh, J.A., Singh, V.K, Jia, Z., and Forman-Kay, J.D. (2006). Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: Implications for fibrillation. Protein Sci. 15, 2795-2804.   DOI
28 Metallo, S.J. (2010). Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14, 481-488.   DOI
29 Midic, U., Oldfield, C.J., Dunker, A.K., Obradovic, Z., and Uversky, V.N. (2009). Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics. 10, S12.
30 Mittag, T., Orlicky, S., Choy, W.Y., Tang, X., Lin, H., Sicheri, F., Kay, L.E., Tyers, M., and Forman-Kay, J.D. (2008). Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc. Natl. Acad. Sci. USA 105, 17772-17777.   DOI
31 Sherr, C.J. (2004). Principles of tumor suppression. Cell 116, 235-246.   DOI
32 Salamanova, E., Costeira-Paulo, J., Han, K.H., Kim, D.H., Nilsson, L., and Wright, A.P.H. (2018). A subset of functional adaptation mutations alter propensity for ${\alpha}$-helical conformation in the intrinsically disordered glucocorticoid receptor tau1core activation domain. Biochim. Biophys. Acta. 1862, 1452-1461.   DOI
33 Sayers, E.W., Gerstner, R.B., Draper, D.E., and Torchia, D.A. (2000). Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 39, 13602-13613.   DOI
34 Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 3, 721-732.   DOI
35 Solyom, Z., Ma, P., Schwarten, M., Bosco, M., Polidori, A., Durand, G., Willbold, D., and Brutscher, B. (2015). The Disordered Region of the HCV Protein NS5A: Conformational Dynamics, SH3 Binding, and Phosphorylation. Biophys. J. 109, 1483-1496.   DOI
36 Sugase, K., Dyson, H.J., and Wright, P.E. (2007). Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021-1025.   DOI
37 Sung, Y.H., and Eliezer, D. (2007). Residual structure, backbone dynamics, and interactions within the synuclein family. J. Mol. Biol. 372, 689-707.   DOI
38 Thapar, R., Mueller, G.A., and Marzluff, W.F. (2004). The N-terminal domain of the Drosophila histone mRNA binding protein, SLBP, is intrinsically disordered with nascent helical structure. Biochemistry 43, 9390-9400.   DOI
39 Arai, M., Sugase, K., Dyson, H.J., and Wright, P.E. (2015). Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc. Natl. Acad. Sci. USA 112, 9614-9619.   DOI
40 Andresen, C., Helander, S., Lemak, A., Fares, C., Csizmok, V., Carlsson, J., Penn, L.Z., Forman-Kay, J.D., Arrowsmith, C.H., Lundstrom, P., et al. (2012). Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res. 40, 6353-6366.   DOI
41 Atwal, R.S., Xia, J., Pinchev, D., Taylor, J., Epand, R.M., and Truant, R. (2007). Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 2600-2615.   DOI
42 Chumakov, P.M. (2007). Versatile functions of p53 protein in multicellular organisms. Biochemistry 72, 1399-1421.
43 Cheng, Y., LeGall, T., Oldfield, C.J., Dunker, A.K., and Uversky, V.N. (2006). Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45, 10448-10460.   DOI
44 Chi, S.W., Lee, S.H., Kim, D.H., Ahn, M.J., Kim, J.S., Woo, J.Y., Torizawa, T., Kainosho, M., and Han, K. H. (2005). Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795-38802.   DOI
45 Chi, S.W., Kim, D.H., Lee, S.H., Chang, I., and Han, K.H. (2007). Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci. 10, 2108-2117.
46 Kim, D.H., Lee, S.H., Chi, S.W., Nam, K.H., and Han, K.H. (2009a). Backbone resonance assignment of a proteolysis-resistant fragment in the oxygen-dependent degradation domain of the hypoxia inducible factor $1{\alpha}$. Mol. Cells 27, 493-496.   DOI
47 James, T.L., Liu, H., Ulyanov, N.B., Farr-Jones, S., Zhang, H., Donne, D.G., Kaneko, K., Groth, D., Mehlhorn, I., Prusiner, S.B., and Cohen, F.E. (1997). Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10086-10091.   DOI
48 Jensen, M.R., Houben, K., Lescop, E., Blanchard, L., Ruigrok, R.W., and Blackledge, M. (2008). Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein. J. Am. Chem. Soc. 130, 8055-8061.   DOI
49 Jonker, H.R., Wechselberger, R.W., Boelens, R., Folkers, G.E., and Kaptein, R. (2005). Structural properties of the promiscuous VP16 activation domain. Biochemistry 25, 827-839.
50 Kim, D.H., Lee, C., Lee, S.H., Kim, K.T., Han, J.J., Cha, E.J., Lim, J.E., Cho, Y.J., Hong, S.H., and Han, K.H. (2017a). The Mechanism of p53 Rescue by SUSP4. Angew. Chem. Int. Ed. Engl. 56, 1278-1282.   DOI
51 Kim, D.H., Lee, S.H., Nam, K.H., Chi, S.W., Chang, I., and Han, K.H. (2009b). Multiple hTAF(II)31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16. BMB Rep. 42, 411-417.   DOI
52 Kim, D.H., Lee, C., Cho, Y.J., Lee, S.H., Cha, E.J., Lim, J.E., Sabo, T.M., Griesinger, C., Lee, D., and Han, K.H. (2015). A pre-structured helix in the intrinsically disordered 4EBP1. Mol. BioSyst. 11, 366-369.   DOI
53 Domanski, M., Hertzog, M., Coutant, J., Gutsche-Perelroizen, I., Bontems, F., Carlier, M.F., Guittet, E., and van Heijenoort, C. (2004). Coupling of folding and binding of thymosin beta4 upon interaction with monomeric actin monitored by nuclear magnetic resonance. J. Biol. Chem. 279, 23637-23645.   DOI
54 To, V., Dzananovic, E., McKenna, S.A., and O'Neil, J. (2016). The Dynamic Landscape of the Full-Length HIV-1 Transactivator of Transcription. Biochemistry 55, 1314-1325.   DOI
55 Uesugi, M., Nyanguile, O., Lu, H., Levine, A.J., and Verdine, G.L. (1997). Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277, 1310-1313.   DOI
56 Csizmok, V., Felli, I.C., Tompa, P., Banci, L., and Bertini, I. (2008). Structural and dynamic characterization of intrinsically disordered human securin by NMR spectroscopy. J. Am. Chem. Soc. 130, 16873-16879.   DOI
57 Dancheck, B., Nairn, A.C., and Peti, W. (2008). Detailed structural characterization of unbound protein phosphatase 1 inhibitors. Biochemistry 47, 12346-12356.   DOI
58 Daughdrill, G.W., Chadsey, M.S., Karlinsey, J.E., Hughes, K.T., and Dahlquist, F.W. (1997). The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma 28. Nat. Struct. Biol. 4, 285-291.   DOI
59 Drysdale, C.M., Duenas, E., Jackson, B.M., Reusser, U., Braus, G.H., and Hinnebusch, A.G. (1995). The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell Biol. 15, 1220-1233.   DOI
60 Kim, D.H., Wright, A., and Han, K.H. (2017b). An NMR study on the intrinsically disordered core transactivation domain of human glucocorticoid receptor. BMB Rep. 10, 522-527.
61 Bernado, P., Bertoncini, C.W., Griesinger, C., Zweckstetter, M., and Blackledge, M. (2005). Defining long-range order and local disorder in native alpha-synuclein using residual dipolar couplings. J. Am. Chem. Soc. 127, 17968-17969.   DOI
62 Mukrasch, M.D., Bibow, S., Korukottu, J., Jeganathan, S., Biernat, J., Griesinger, C., Mandelkow, E., and Zweckstetter, M. (2009). Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 7, e34.
63 Murrali, M.G., Schiavina, M., Sainati, V., Bermel, W., Pierattelli, R., and Felli, I.C. (2018). $^{13}C$ APSY-NMR for sequential assignment of intrinsically disordered proteins. J. Biomol. NMR. 70, 167-175.   DOI
64 Baldwin, R.L., and Zimm, B.H. (2000). Are denatured proteins ever random coils? Proc Natl Acad Sci U S A. 97, 12391-12392.   DOI
65 Benison, G., Nyarko, A., and Barbar, E. (2006). Heteronuclear NMR identifies a nascent helix in intrinsically disordered dynein intermediate chain: implications for folding and dimerization. J. Mol. Biol. 362, 1082-1093.   DOI
66 Benison, G., Berkholz, D.S., and Barbar, E. (2007). Protein assignments without peak lists using higher-order spectra. J. Magn. Reson. 189, 173-181.   DOI
67 Bibow, S., Mukrasch, M.D., Chinnathambi, S., Biernat, J., Griesinger, C., Mandelkow, E., and Zweckstetter, M. (2011). The Dynamic Structure of Filamentous Tau. Angew. Chem. Int. Ed. Engl. 50, 11520-11524.   DOI
68 Bienkiewicz, E.A., Adkins, J.N., and Lumb, K.J. (2002). Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41, 752-759.   DOI
69 Boettcher, J.M., Hartman, K.L., Ladror, D.T., Qi, Z., Woods, W.S., George, J.M., and Rienstra, C.M. (2008). Membrane-induced folding of the cAMP-regulated phosphoprotein endosulfine-alpha. Biochemistry 47, 12357-12364.   DOI
70 Dunker, A.K., Babu, M.M., Barbar, E., Blackledge, M., Bondosm, S.E., Dosztanyi, Z., Dyson, H.J., Forman-Kay, J., Fuxreiter, M., Gsponer, J., Han, K.H., Jones, D.T., Longhi, S., Metallo, S.J., Nishikawa, K., Nussinov, R., Obradovic, Z., Pappu, R.V., Rost, B., Selenko, P., Subramaniam, V., Sussman, J.L., Tompa, P., and Uversky, V.N. (2013). What's in a name? Why these proteins are intrinsically disordered. Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins 1, e24157.   DOI
71 O'Hare, P., and Williams, G. (1992). Structural studies of the acidic transactivation domain of the Vmw65 protein of herpes simplex virus using 1H NMR. Biochemistry 31, 4150-4156.   DOI
72 Neri, D., Billeter, M., Wider, G., and Wuthrich, K. (1992). NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science 257, 1559-1563.   DOI
73 Newcombe, E.A., Ruff, K.M., Sethi, A., Ormsby, A.R., Ramdzan, Y.M., Fox, A., Purcell, A.W., Gooley, P.R., Pappu, R.V., and Hatters, D.M. (2018). Tadpole-like conformations of huntingtin exon 1 are characterized by conformational heterogeneity that persists regardless of polyglutamine length. J. Mol. Biol. 430, 1442-1458.   DOI
74 Noval, M.G., Gallo, M., Perrone, S., Salvay, A.G., Chemes, L.B., and de Prat-Gay, G. (2013). Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation. PLoS One 8, e72760.   DOI
75 Oldfield, C.J., Cheng, Y., Cortese, M.S., Romero, P., Uversky, V.N., and Dunker, A.K. (2005). Coupled folding and binding with alpha-helix forming molecular recognition elements. Biochemistry 44, 12454-12470.   DOI
76 Mohan, A., Oldfield, C.J., Radivojac, P., Vacic, V., Cortese, M.S., Dunker, A.K., and Uversky, V.N. (2006). Analysis of Molecular Recognition Features (MoRFs). J. Mol. Biol. 362, 1043-1059.   DOI
77 Van Hoy, M., Leuther, K.K., Kodadek, T., and Johnston, S.A. (1993). The acidic activation domains of the GCN4 and GAL4 proteins are not alpha helical but form beta sheets. Cell 72, 587-594.   DOI
78 Uversky, V.N. (2015). Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J. 282, 1182-1189.   DOI
79 Uversky, V.N., and Dunker, A.K. (2010). Understanding protein non-folding. Biochim. Biophys. Acta. 1804, 1231-1264.   DOI
80 van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E., and Babu, M.M. (2014). Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589-6631.   DOI
81 Wells, M., Tidow, H., Rutherford, T.J., Markwick, P., Jensen, M.R., Mylonas, E., Svergun, D.I., Blackledge, M., and Fersht, A.R. (2008). Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. USA 105, 5762-5767.   DOI
82 Xu, H., Ye, H., Osman, N.E., Sadler, K., Won, E.Y., Chi, S.W., and Yoon, H.S. (2009). The MDM2-binding region in the transactivation domain of p53 also acts as a Bcl-X(L)-binding motif. Biochemistry 48, 12159-12168.   DOI
83 Feuerstein, S., Solyom, Z., Aladag, A., Favier, A., Schwarten, M., Hoffmann, S., Willbold, D., and Brutscher, B. (2012). Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J. Mol. Biol. 420, 310-323.   DOI
84 Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C., and Brown, C.J. (2000). Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform. 11, 161-171.
85 Dyson, H.J., and Wright, P.E. (2002). Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54-60.   DOI
86 Eliezer, D., Kutluay, E., Bussell, R. Jr., and Browne, G., (2001). Conformational properties of a-synuclein in its free and lipidassociated states. J. Mol. Biol. 307, 1061-1073.   DOI
87 Fletcher, C.M., and Wagner, G. (1998). The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci. 7, 1639-1642.   DOI
88 Follis, A.V., Hammoudeh, D.I., Wang, H., Prochownik, E.V., and Metallo, S.J. (2008). Structural rationale for the coupled binding and unfolding of the c-myc oncoprotein by small molecules. Chem. Biol. 15, 1149-1155.   DOI
89 Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004). Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015-1026.   DOI
90 Kunze, G., Barre, P., Scheidt, H.A., Thomas, L., Eliezer, D., and Huster, D. (2012). Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Biochim. Biophys. Acta. 1818, 2302-2313.   DOI
91 Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J., and Pavletich, N.P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953.   DOI
92 Laptenki, O., and Prives, C. (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951-961.   DOI
93 Lavery, D.N., and McEwan, I.J. (2008) Structural characterization of the native NH2-terminal transactivation domain of the human androgen receptor: a collapsed disordered conformation underlies structural plasticity and protein-induced folding. Biochemistry 47, 3360-3369.   DOI
94 Lee, C., Kim, D.H., Lee, S.H., Su, J., and Han, K.H. (2016). Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein. BMB Rep. 49, 431-436.   DOI
95 Lee, H., Mok, K.H., Muhandiram, R., Park, K.H., Suk, J.E., Kim, D.H., Chang, J., Sung, Y.C., Choi, K.Y., and Han, K.H. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426-29432.   DOI
96 Pavletich, N.P. (1999). Mechanisms of cyclin-dependent kinase regulation: structures of cdks, their cyclin activators, and cip and INK4 inhibitors, J. Mol. Biol, 287, 821-828.   DOI
97 Zhang, X., Perugini, M.A., Yao, S., Adda, C.G., Murphy, V.J., Low, A., Anders, R.F., and Norton, R. S. (2008). Solution conformation, backbone dynamics and lipid interactions of the intrinsically unstructured malaria surface protein MSP2. J. Mol. Biol. 379, 105-121.   DOI
98 Zhao, X., Georgieva, B., Chabes, A., Domkin, V., Ippel, J.H., Schleucher, J., Wijmenga, S., Thelander, L., and Rothstein, R. (2000). Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality. Mol. Cell Biol. 23, 9076-9083.
99 Lee, K.H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., Maxwell, B.A., Kim, N.C., Temirov, J., Moore, J., Kolaitis, R.M., Shaw, T.I., Bai, B., Peng, J., Kriwacki, R.W., and Taylor, J.P. (2016). C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 167, 774-788.   DOI
100 Lee, S.H., Kim, D.H., Han, J.J., Cha, E.J., Lim, J.E., Cho, Y.J., Lee, C., and Han, K.H. (2012). Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins. Curr. Protein Pept. Sci. 13, 34-54.   DOI
101 Radhakrishnan, I., Perez-Alvarado, G.C., Dyson, H.J., and Wright, P.E. (1998). Conformational preferences in the Ser133-phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Lett. 430, 317-322.   DOI
102 Piai, A., Calcada, E.O., Tarenzi, T., Grande, A.D., Varadi, M., Tompa, P., Felli, I.C., and Pierattelli, R. (2016). Just a Flexible Linker? The structural and dynamic properties of CBP-ID4 revealed by NMR spectroscopy. Biophys. J. 110, 372-381.   DOI
103 Radivojac, P., Iakoucheva, L.M., Oldfield, C.J., Obradovic, A., Uversky, V.N., and Dunker, A.K. (2007). Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439-1456.   DOI
104 Radhakrishnan, I., Perez-Alvarado, G.C., Parker, D., Dyson, H.J., Montminy, M.R., and Wright, P.E. (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752.   DOI
105 Ramelot, T.A., Gentile, L.N., and Nicholson, L.K. (2000). Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725.   DOI
106 Reingewertz, T.H., Benyamini, H., Lebendiker, M., Shalev, D.E., and Friedler, A. (2009). The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Protein Eng. Des. Sel. 22, 281-287.   DOI
107 Rudolph, M.G., Bayer, P., Abo, A., Kuhlmann, J., Vetter, I.R., and Wittinghofer, A. (1998). The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. Chem. 273, 18067-18076.   DOI