• Title/Summary/Keyword: Protein Network

Search Result 612, Processing Time 0.022 seconds

SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents

  • Sujin Choi;Sang-Hoon Kim;Mi Seon Han;Yoonsun Yoon;Yun-Kyung Kim;Hye-Kyung Cho;Ki Wook Yun;Seung Ha Song;Bin Ahn;Ye Kyung Kim;Sung Hwan Choi;Young June Choe;Heeji Lim;Eun Bee Choi;Kwangwook Kim;Seokhwan Hyeon;Hye Jung Lim;Byung-chul Kim;Yoo-kyoung Lee;Eun Hwa Choi;Eui-Cheol Shin;Hyunju Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.33.1-33.13
    • /
    • 2023
  • Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.

Expanded IL-22+ Group 3 Innate Lymphoid Cells and Role of Oxidized LDL-C in the Pathogenesis of Axial Spondyloarthritis with Dyslipidaemia

  • Hong Ki Min;Jeonghyeon Moon;Seon-Yeong Lee;A Ram Lee;Chae Rim Lee;Jennifer Lee;Seung-Ki Kwok;Mi-La Cho;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.43.1-43.14
    • /
    • 2021
  • Group 3 innate lymphoid cells (ILC3), which express IL-22 and IL-17A, has been introduced as one of pathologic cells in axial spondyloarthritis (axSpA). Dyslipidaemia should be managed in axSpA patients to reduce cardiovascular disease, and dyslipidaemia promotes inflammation. This study aimed to reveal the role of circulating ILC3 in axSpA and the impact of dyslipidaemia on axSpA pathogenesis. AxSpA patients with or without dyslipidaemia and healthy control were recruited. Peripheral blood samples were collected, and flow cytometry analysis of circulating ILC3 and CD4+ T cells was performed. The correlation between Ankylosing Spondylitis Disease Activity Score (ASDAS)-C-reactive protein (CRP) and circulating immune cells was evaluated. The effect of oxidized low-density lipoprotein cholesterol (oxLDL-C) on immune cell differentiation was confirmed. AxSpA human monocytes were cultured with with oxLDL-C, IL-22, or oxLDL-C plus IL-22 to evaluate osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR of osteoclast-related gene expression. Total of 34 axSpA patients (13 with dyslipidaemia and 21 without) were included in the analysis. Circulating IL-22+ ILC3 and Th17 were significantly elevated in axSpA patients with dyslipidaemia (p=0.001 and p=0.034, respectively), and circulating IL-22+ ILC3 significantly correlated with ASDAS-CRP (Rho=0.4198 and p=0.0367). Stimulation with oxLDL-C significantly increased IL-22+ ILC3, NKp44- ILC3, and Th17 cells, and these were reversed by CD36 blocking agent. IL-22 and oxLDL-C increased TRAP+ cells and osteoclast-related gene expression. This study suggested potential role of circulating IL-22+ ILC3 as biomarker in axSpA. Furthermore, dyslipidaemia augmented IL-22+ ILC3 differentiation, and oxLDL-C and IL-22 markedly increased osteoclastogenesis of axSpA.

Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation

  • Su Hwan Lee;Ju Hye Shin;Min Woo Park;Junhyung Kim;Kyung Soo Chung;Sungwon Na;Ji-Hwan Ryu;Jin Hwa Lee;Moo Suk Park;Young Sam Kim;Jong-Seok Moon
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.18.1-18.15
    • /
    • 2022
  • Dysfunction of mitochondrial metabolism is implicated in cellular injury and cell death. While mitochondrial dysfunction is associated with lung injury by lung inflammation, the mechanism by which the impairment of mitochondrial ATP synthesis regulates necroptosis during acute lung injury (ALI) by lung inflammation is unclear. Here, we showed that the impairment of mitochondrial ATP synthesis induces receptor interacting serine/threonine kinase 3 (RIPK3)-dependent necroptosis during lung injury by lung inflammation. We found that the impairment of mitochondrial ATP synthesis by oligomycin, an inhibitor of ATP synthase, resulted in increased lung injury and RIPK3 levels in lung tissues during lung inflammation by LPS in mice. The elevated RIPK3 and RIPK3 phosphorylation levels by oligomycin resulted in high mixed lineage kinase domain-like (MLKL) phosphorylation, the terminal molecule in necroptotic cell death pathway, in lung epithelial cells during lung inflammation. Moreover, the levels of protein in bronchoalveolar lavage fluid (BALF) were increased by the activation of necroptosis via oligomycin during lung inflammation. Furthermore, the levels of ATP5A, a catalytic subunit of the mitochondrial ATP synthase complex for ATP synthesis, were reduced in lung epithelial cells of lung tissues from patients with acute respiratory distress syndrome (ARDS), the most severe form of ALI. The levels of RIPK3, RIPK3 phosphorylation and MLKL phosphorylation were elevated in lung epithelial cells in patients with ARDS. Our results suggest that the impairment of mitochondrial ATP synthesis induces RIPK3-dependent necroptosis in lung epithelial cells during lung injury by lung inflammation.

Comparison of Antibody and T Cell Responses Induced by Single Doses of ChAdOx1 nCoV-19 and BNT162b2 Vaccines

  • Ji Yeun Kim;Seongman Bae;Soonju Park;Ji-Soo Kwon;So Yun Lim;Ji Young Park;Hye Hee Cha;Mi Hyun Seo;Hyun Jung Lee;Nakyung Lee;Jinyeong Heo;David Shum;Youngmee Jee;Sung-Han Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.29.1-29.9
    • /
    • 2021
  • There are limited data directly comparing humoral and T cell responses to the ChAdOx1 nCoV-19 and BNT162b2 vaccines. We compared Ab and T cell responses after first doses of ChAdOx1 nCoV-19 vs. BNT162b2 vaccines. We enrolled healthcare workers who received ChAdOx1 nCoV-19 or BNT162b2 vaccine in Seoul, Korea. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein-specific IgG Abs (S1-IgG), neutralizing Abs (NT Abs), and SARS-CoV-2-specific T cell response were evaluated before vaccination and at 1-wk intervals for 3 wks after vaccination. A total of 76 persons, comprising 40 injected with the ChAdOx1 vaccine and 36 injected with the BNT162b2 vaccine, participated in this study. At 3 wks after vaccination, the mean levels (±SD) of S1-IgG and NT Abs in the BNT162b2 participants were significantly higher than in the ChAdOx1 participants (S1-IgG, 14.03±7.20 vs. 6.28±8.87, p<0.0001; NT Ab, 183.1±155.6 vs. 116.6±116.2, p=0.035), respectively. However, the mean values of the T cell responses in the 2 groups were comparable after 2 wks. The humoral immune response after the 1st dose of BNT162b2 developed faster and was stronger than after the 1st dose of ChAdOx1. However, the T cell responses to BNT162b2 and ChAdOx1 were similar.

Tobacco Smoking Could Accentuate Epithelial-Mesenchymal Transition and Th2-Type Response in Patients With Chronic Rhinosinusitis With Nasal Polyps

  • Ki-Il Lee;Younghwan Han;Jae-Sung Ryu;Seung Min In;Jong-Yeup Kim;Joong Su Park;Jong-Seok Kim;Juhye Kim;Jubin Youn;Seok-Rae Park
    • IMMUNE NETWORK
    • /
    • v.22 no.4
    • /
    • pp.35.1-35.16
    • /
    • 2022
  • Tobacco smoking (TS) has been known as one of the most potent risk factors for airway inflammatory diseases. However, there has been a paucity of information regarding the immunologic alteration mediated by TS in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). To identify the effect of TS, we harvested human tissue samples (never smoker: n=41, current smoker: n=22, quitter: n=23) and analyzed the expression of epithelial-derived cytokines (EDCs) such as IL-25, IL-33, and thymic stromal lymphopoietin. The expressions of Th2 cytokines and total serum IgE showed a type-2 inflammatory alteration by TS. In addition, the epithelial marker E-cadherin and epithelial-mesenchymal transition (EMT)-associated markers (N-cadherin, α-SMA, and vimentin) were evaluated. Histological analysis showed that EDC expressions were upregulated in the current smoker group and downregulated in the quitter group. These expression patterns were consistent with mRNA and protein expression levels. We also found that the local Th2 cytokine expression and IgE class switching, as well as serum IgE levels, were elevated in the current smoker group and showed normal levels in the quitter group. Furthermore, the expressions of E-cadherin decreased while those of N-cadherin, α-SMA, and vimentin increased in the current smoker group compared those in the never smoker group. Taken together, these results indicate that TS contributes to the deterioration of pathogenesis by releasing local EDCs and Th2 cytokines, resulting in EMT in patients with CRSwNP. We verified that alterations of immunological response by TS in sinonasal epithelium can play a vital role in leading to CRSwNP.

Oxidized LDL Accelerates Cartilage Destruction and Inflammatory Chondrocyte Death in Osteoarthritis by Disrupting the TFEB-Regulated Autophagy-Lysosome Pathway

  • Jeong Su Lee;Yun Hwan Kim;JooYeon Jhun;Hyun Sik Na;In Gyu Um;Jeong Won Choi;Jin Seok Woo;Seung Hyo Kim;Asode Ananthram Shetty;Seok Jung Kim;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.15.1-15.18
    • /
    • 2024
  • Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.

Effects of Lipopolysaccride-induced Stressor on the Expression of Stress-related Genes in Two Breeds of Chickens (Lipopolysaccride 감염처리가 닭의 품종간 스트레스연관 유전자 발현에 미치는 영향)

  • Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The objective of the present study was to determine the expression of genes associated with lipopolysaccharide (LPS)-induced stressor in two breeds of chickens: the Korean native chicken (KNC) and the White Leghorn chicken (WLH). Forty chickens per breed, aged 40 weeks, were randomly allotted to the control (CON, administered the saline vehicle) and LPS-injected stress groups. Samples were collected at 0 and 48 h post-LPS injection, and total RNA was extracted from the chicken livers for RNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. In response to LPS, 1,044 and 1,193 genes were upregulated, and 1,000 and 1,072 genes were downregulated in the KNC and WLH, respectively, using a ${\geq}2$-fold cutoff change. A functional network analysis revealed that stress-related genes were downregulated in both KNC and WLH after LPS infection. The results obtained from the qRT-PCR analysis of mRNA expression of heat shock 90 (HSP90), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), activating transcription factor 4 (ATF4), sterol regulatory element-binding protein 1 (SREBP1), and X-box binding protein 1 (XBP1) were confirmed by the results of the microarray analysis. There was a significant difference in the expression of stress-associated genes between the control and LPS-injected KNC and WLH groups. The qRT-PCR analysis revealed that the stress-related $HSP90{\alpha}$ and HMGCR genes were downregulated in both LPS-injected KNC and WLH groups. However, the HSP70 and $HSP90{\beta}$ genes were upregulated only in the LPS-injected KNC group. The results suggest that the mRNA expression of stress-related genes is differentially affected by LPS stimulation, and some of the responses varied with the chicken breed. A better understanding of the LPS-induced infective stressors in chicken using the qRT-PCR and RNA microarray analyses may contribute to improving animal welfare and husbandry practices.

Effect of Starvation on Some Parameters in Rhynchocypris oxycephalus (Sauvage and Dabry): A Review (버들치, Rhynchocypris oxycephalus (Sauvage and Dabry) 기아시 일부형질에서의 효과: 개관)

  • Park In-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.351-368
    • /
    • 2004
  • Following the previous experiments, a starvation experiment was conducted to determine the influence of feeding and starvation on the histological and biochemical changes, the morphormetric changes in the sectioned body and the morphometric changes in Rhynchocypris oxycephalus (Sauvage and Dabry). The influence of starvation on nutritional conditions of the histological changes of hepatocyte and intestinal epithelium as hepatosmatic index (HSI), protein, RNA and DNA concentrations of liver in R. oxycephalus was tested. Although the starved group showed higher concentrations of protein, DNA and RNA than the fed group, food deprivation resulted in a decrease in the HSI, hepatocyte nucleus size and nuclear height of the intestinal epithelium. The RNA - DNA ratio appears to be a useful index of nutritional status in R. oxycephalus and may be useful for determining if R. oxycephalus is in a period of rapid or slow growth at the time of sampling. Additionally, the data have been interpreted in detail and some biologically important relationships discussed. The effects of starvation on the morphometrical changes in sectioned body traits, condition factor, viscera index and dressing percentage were determined for evaluating nutritional conditions of R. oxycephalus. Starvation for nine weeks resulted in a decrease in most sectioned traits as well as in condition factor and viscera index (P<0.05). These findings suggest that nutritional parameters used in this study appear to be a useful index for nutritional status in this species. The data has been interpreted in detail and some important body sectioned values of interest to commercial growers discussed. A 75-day study was conducted to determine the effect of starvation on classical and truss parameters in R. oxycephalus. Truss dimensions of almost the entire head and trunk region as well as the abdomen were increased significantly through feeding or starvation (P<0.05). Truss dimensions of the caudal region generally decreased through feeding or starvation, particularly those dimensions at the hind part of the trunk. There were some significant decreases in classical dimensions of the head region during feeding, in relation to body depth characteristics in the trunk and caudal region during starvation, whereas there was only one decreasing classical dimension in the caudal region during feeding. The results of this study indicate that application of the truss network as a character set enforces classical coverage across the body form, discrimination among experimental groups thus being enhanced. Considering that the dimension of the lower part of the head and some truss and classical dimensions were least affected by feeding and starvation, these dimensions may then be useful as a taxonomical indicator to discriminate the species of Rhynchocypris sp. The value of trunk region dimensions with a large component of body depth in R. oxycephalus is most likely to be compromised by variability related to differences in feeding regimes of fish in different habitats.

Transfer and Validation of NIRS Calibration Models for Evaluating Forage Quality in Italian Ryegrass Silages (이탈리안 라이그라스 사일리지의 품질평가를 위한 근적외선분광 (NIRS) 검량식의 이설 및 검증)

  • Cho, Kyu Chae;Park, Hyung Soo;Lee, Sang Hoon;Choi, Jin Hyeok;Seo, Sung;Choi, Gi Jun
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.81-90
    • /
    • 2012
  • This study was evaluated high end research grade Near infrared spectrophotometer (NIRS) to low end popular field grade multiple Near infrared spectrophotometer (NIRS) for rapid analysis at forage quality at sight with 241 samples of Italian ryegrass silage during 3 years collected whole country for evaluate accuracy and precision between instruments. Firstly collected and build database high end research grade NIRS using with Unity Scientific Model 2500X (650 nm~2,500 nm) then trim and fit to low end popular field grade NIRS with Unity Scientific Model 1400 (1,400 nm~2,400 nm) then build and create calibration, transfer calibration with special transfer algorithm. The result between instruments was 0.000%~0.343% differences, rapidly analysis for chemical constituents, NDF, ADF, and crude protein, crude ash and fermentation parameter such as moisture, pH and lactic acid, finally forage quality parameter, TDN, DMI, RFV within 5 minutes at sight and the result equivalent with laboratory data. Nevertheless during 3 years collected samples for build calibration was organic samples that make differentiate by local or yearly bases etc. This strongly suggest population evaluation technique needed and constantly update calibration and maintenance calibration to proper handling database accumulation and spread out by knowledgable control laboratory analysis and reflect calibration update such as powerful control center needed for long lasting usage of forage analysis with NIRS at sight. Especially the agriculture products such as forage will continuously changes that made easily find out the changes and update routinely, if not near future NIRS was worthless due to those changes. Many research related NIRS was shortly study not long term study that made not well using NIRS, so the system needed check simple and instantly using with local language supported signal methods Global Distance (GD) and Neighbour Distance (ND) algorithm. Finally the multiple popular field grades instruments should be the same results not only between research grade instruments but also between multiple popular field grade instruments that needed easily transfer calibration and maintenance between instruments via internet networking techniques.

A Co-inhibitory Molecule, B7-H4, Synergistically Potentiates Oral Tolerance by Inducing CD4+CD25+FoxP3+ T Cells

  • Wen, Lanying;Yang, Sung-Yeun;Choi, Jae-Kyoung;Kim, Young-Hee;Kwon, Eun-Hee;Lee, Hyun-Ji;Jeoung, Hae-Young;Hwang, Du-Hyeon;Hwang, Dong-Jin;Choi, In-Hak
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Background: A co-inhibitory molecule, B7-H4, is believed to negatively regulate T cell immunity by suppressing T cell proliferation and inhibiting cytokine production. However, the mechanism behind B7-H4-mediated tolerance remains unclear. Methods: Balb/c $(H-2^d)$ mice were fed with dendritic cell line, DC2.4 $(H-2^d)$ every day for 10 days. Meantime, mice were hydrodynamically injected with recombinant plasmid expressing B7-H4 fusion protein (B7-H4.hFc) or hFc via tail vein. One day after last feeding, mice were immunized with allogeneic B6 spleen cells. 14 days following immunization, mice were challenged with B6 spleen cells to ear back and the ear swelling was determined the next day. Subsequently, a mixed lymphocyte reaction (MLR) was also performed and cytokines profiles from the reaction were examined by sandwich ELISA. Frequency of immunosuppressive cell population was assayed with flow cytometry and mRNA for FoxP3 was determined by RT-PCR. Results: Tolerant mice given plasmid expressing B7-H4.hFc showed a significant reduction in ear swelling compared to control mice. In addition, T cells from mice given B7-H4.hFc plasmid revealed a significant hyporesponsiveness of T cells against allogeneic spleen cells and showed a significant decrease in Th1 and Th2 cytokines such as IFN-${\gamma}$, IL-5, and TNF-${\alpha}$. Interestingly, flow cytometric analysis showed that the frequency of CD4+CD25+FoxP3+ Tregs in spleen was increased in tolerant mice given recombinant B7-H4.hFc plasmid compared to control group. Conclusion: Our results demonstrate that B7-H4 synergistically potentiates oral tolerance induced by allogeneic cells by increasing the frequency of FoxP3+ CD4+CD25+ Treg and reducing Th1 and Th2 cytokine production.