• Title/Summary/Keyword: Protein Kinase C

Search Result 1,451, Processing Time 0.034 seconds

Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 AKT/mTOR/GSK-3β 신호경로 조절을 통한 벌 사상자 추출물(CME)의 apoptosis 및 cell cycle arrest 효과)

  • Lim, Eun Gyeong;Kim, Guen Tae;Kim, Bo Min;Kim, Eun Ji;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.663-672
    • /
    • 2016
  • The Cnidium monnieri (L.) Cusson is an annual plant distributed in China and Korea. The fruit of C. monnieri is used as a medicinal herb that is effective for the treatment of carbuncle and pain in female genitalia. However, the anti-cancer effects of CME have not yet been reported. In this study, we assessed the apoptotic effects and cell cycle arrest effects of ethanol extracts from C. monnieri on HCT116 colon cancer cells. The results of an MTT assay and LDH assay demonstrated a decrease in cell viability and the cytotoxic effects of CME. In addition, the number of apoptotic body and the apoptotic rate were increased in a dose-dependent manner through Hoechst 33342 staining and Annexin V-PI double staining. In addition, cell cycle arrest occurred at the G1 phase by CME. Protein kinase B (Akt) plays an important role in cancer cell survival, growth, and division. Akt down-regulates apoptosis-mediated proteins, such as mammalian target of rapamycin (mTOR), p53, and Glycogen Synthase kinase-3β (GSK-3β). CME could regulate the expression levels of p-Akt, p-mTOR, p-GSK-3β, Bcl-2 family members, caspase-3, and PARP. Furthermore, treatment with CME, LY294002 (PI3K/Akt inhibitor), BIO (GSK-3β inhibitor), and Rapamycin (mTOR inhibitor) showed that apoptotic effects occurred through the regulation of the AKT/mTOR/GSK-3β signaling pathway. Our results demonstrated CME could induce apoptosis and cell cycle arrest in HCT116 colon cancer cells.

Allium hookeri Extract Improves Type 2 Diabetes Mellitus in C57BL/KSJ Db/db Obese Mouse via Regulation of Hepatic Lipogenesis and Glucose Metabolism (삼채 추출물의 인슐린 저항성 개선 효과 및 기전 탐색)

  • Kim, Ji-Soo;Heo, Jin-Sun;Choi, Jong-Won;Kim, Gun-Do;Sohn, Kie-Ho
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1081-1090
    • /
    • 2015
  • Diabetes has been one of major health risks in industrialized countries. Allium hookeri is a wild herb distributed in India and Myanmar. The root of the plant has been used as food and medicine in Southeast Asia. We investigated Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse. C57BL/KSJ db/db obese mouse arise out of Type 2 diabetes and we treated Allium hookeri methanol extract 400 mg/kg (AH 400), 800 mg/kg (AH 800), positive control group (thiazolidinedine;TZDs) were administered orally for 8weeks. AH treated group normalized lipid enzyme system (triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) and serum glucose, HbA1c and plasma insulin level. AH treated group recovered β-cell damage by hyperglycemia and fatty liver disease. AH treated group significantly up regulated expression of Peroxisome proliferator-activated receptor gamma (PPAR-γ), pyruvate dehydrogenase kinase4 (PDK4), Sterol regulatory element-binding protein 1c (SREBP 1) and fork head box O1 (FOX 01) proteins in C57BL/KSJ db/db obese mouse liver. And we found that AH treated group decreased hepatic malondialdehyde formation in C57BL/KSJ db/db obese mouse liver. These results indicate that Allium hookeri methanol extract might be a potential anti-diabetic agent and could be useful in the treatment of type 2 diabetes mellitus.

Antioxidant and Antidiabetic Activities of Jerusalem Artichoke Composites Containing Gynura procumbens, Momordica charantia, and Curcuma longa via AMPK Activation (명월초, 여주 및 울금을 포함한 돼지감자 복합물의 항산화 및 AMPK 활성화를 통한 항당뇨 활성)

  • Lee, Soo-Jung;Hu, Wen-Si;Pyo, Jae-Ho;Ryu, Ji Hyeon;Kang, Dawon;Jeong, Bo-Young;Sung, Nak-Ju
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • This study was performed to identify the antioxidant and ${\alpha}$-glucosidase inhibitory activities of water and 70% ethanol extracts of the three following herbs: G. procumbens, M. charantia, and C. longa. In addition, the antioxidant and antidiabetic activities of five types of Jerusalem artichoke composites (JA1 - 5), which were prepared by adding ethanol extracts of several herbs to Jerusalem artichoke concentrate, were studied and compared. The results showed that the total phenol and flavonoid contents of the ethanol extracts were higher than those of the water extracts. The DPPH and ABTS radical scavenging activities and reducing power depended on the total phenol and flavonoid contents. The antioxidant activities of ethanol extracts from G. procumbens and C. longa were comparable. Moreover, the ${\alpha}$-glucosidase inhibitory activity of the ethanol extracts ($2,000{\mu}g/ml$) from each herb was found to be over 50%. In contrast, the five types of JA composites showed higher total phenol and flavonoid contents than those of JA concentrate. In addition, increased antioxidant and ${\alpha}$-glucosidase inhibitory activities were observed, with that of JA1 being the highest. However, all concentrations ($1{\sim}100{\mu}g/ml$) of JA tested did not affect the cell viability of Chang cells. In addition, JA induced the activation of AMP-activated protein kinase (AMPK) in Chang cells and significantly increased the glucose uptake in C2C12 cells. Therefore, it could be concluded that the JA composites (JA1 - 5) mixed with G. procumbens, M. charantia, and C. longa extracts were effective in increasing the extracts' antioxidant and antidiabetic activities.

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

High Extracellular Calcium Increased Expression of Ank, PC-1 and Osteopontin in Mouse Calvarial Cells

  • Song, Mi-Na;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2008
  • In the process of bone remodeling, mineral phase of bone is dissolved by osteoclasts, resulting in elevation of calcium concentration in micro-environment. This study was performed to explore the effect of high extracellular calcium ($Ca{^{2+}}_e$) on mineralized nodule formation and on the expression of progressive ankylosis (Ank), plasma cell membrane glycoprotein-1 (PC-1) and osteopontin by primary cultured mouse calvarial cells. Osteoblastic differentiation and mineralized nodule formation was induced by culture of mouse calvarial cells in osteoblast differentiation medium containing ascorbic acid and ${\beta}$-glycerophosphate. Although Ank, PC-1 and osteopontin are well known inhibitors of mineralization, expression of these genes were induced at the later stage of osteoblast differentiation during when expression of osteocalcin, a late marker gene of osteoblast differentiation, was induced and mineralization was actively progressing. High $Ca{^{2+}}_e$(10 mM) treatment highly enhanced mRNA expression of Ank, PC-1 and osteopontin in the late stage of osteoblast differentiation but not in the early stage. Inhibition of p44/42 MAPK activation but not that of protein kinase C suppressed high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin. When high $Ca{^{2+}}_e$(5 mM or 10 mM) was present in culture medium during when mineral deposition was actively progressing, matrix calcifiation was significantly increased by high $Ca{^{2+}}_e$. This stimulatory effect was abolished by pyrophosphate (5 mM) or levamisole (0.1-0.5 mM), an alkaline phosphatase inhibitor. In addition, probenecid (2mM), an inhibitor of Ank, suppressed matrix calcification in both control and high $Ca{^{2+}}_{e^-}$treated group, suggesting the possible role of Ank in matrix calcification by osteoblasts. Taken together, these results showed that high $Ca{^{2+}}_e$ stimulates expression of Ank, PC-1 and osteopontin as well as matrix calcification in late differentiation stage of osteoblasts and that p44/42 MAPK activation is involved in high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin.

New Evidence of Alleles (V199I and G52S) at the PRKAG3 (RN) Locus Affecting Pork Meat Quality

  • Chen, J.F.;Dai, L.H.;Peng, J.;Li, J.L.;Zheng, R.;Zuo, B.;Li, F.E.;Liu, M.;Yue, K.;Lei, M.G.;Xiong, Y.Z.;Deng, C.Y.;Jiang, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.471-477
    • /
    • 2008
  • The porcine PRKAG3 (RN) gene encodes the regulatory gamma subunit of adenosine monophosphate-activated protein kinase (AMPK), which is a good candidate gene affecting meat quality. In this study, the effects of two missense mutations A595G (Ile199Val) and G154A (Gly52Ser) in porcine PRKAG3 gene on meat quality traits were studied in M. Longissimus dorsi (LD), M. Semispinalis capitis (SC) and M. Biceps femoris (BF) from different populations of 326 pigs. The PRKAG3 alleles 199I, 199IV, 52S and 52G were identified with PCR-RFLPs and all genotypes - 199I/199I, 199I/199V, 199V/199V, 52S/52S, 52S/52G and 52G/52G - were found. The frequency of V allele was larger than that of I allele in all populations. I allele frequency was zero in Chinese Meishan pigs (population D) especially. G allele frequency was larger than that of S allele in all populations except Large White (population A). Both variations at the PRKAG3 locus significantly affected these meat quality traits. The pork meat quality has not previously been established in Meishan or crosses thereof. The results suggested that generally pH of LD, SC and BF was higher in Meishan pigs than that in other populations. Moreover, Meishan pigs showed higher water-holding capacity and intramuscular fat (IMF), lower water content and water loss percentage compared to other populations in terms of the two variations. The results present here supply new evidence that alleles V199I and G52S at the PRKAG3 locus affect pork meat quality and provide useful information on pork production.

Phenylarsine Oxide and Adenosine-sensitive Trans-golgi Complex Targeting of GFP Fused to Modified Sulfatide-binding Peptide (Phenylarsine oxide와 adenosine에 민감한 sulfatide 결합 펩타이드의 trans-golgi network 타기팅)

  • Jun, Yong-Woo;Lee, Jin-A;Jang, Deok-Jin
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.162-169
    • /
    • 2018
  • Many cytoplasmic proteins are targeted to the cytoplasmic membrane of the trans-Golgi network (TGN) via an N-terminal short helix. We previously showed that the 20 N-terminal amino acids of Aplysia phosphodiesterase 4 (ApPDE4) long form are sufficient for its targeting to the plasma membrane and the TGN. The N-terminus of the ApPDE4 long form binds to PI4P and sulfatide in vitro. Therefore, in order to decipher the roles of sulfatide in Golgi complex targeting, we examined the cellular localization of sulfatide-binding peptides. In this study, we found that enhanced green fluorescent protein (EGFP) fused to the C-terminus of modified sulfatide- and heparin-binding peptides (mHSBP-EGFP) was localized to the TGN. On the other hand, its mutant, in which tryptophan was replaced with an alanine, leading to the impairment of heparin and sulfatide binding, was localized to cytosol. We also found that the TGN targeting of mHSBP-EGFP is impaired by the treatment of antimycin A, phenylarsine oxide (PAO), and adenosine but not a high concentration of wortmannin. These results suggest that PAO and adenosine-sensitive kinases, including phosphatidylinositol 4-kinase II, may play key roles in the recruitment of mHSBP-EGFP.

The mechanism of chondrogenesis inhibition by X-Irradiation (X선에 의한 연골세포 분화 억제 작용경로)

  • Ha, Jong-Yeol;Lim, Young-Bin;Lee, Yoon-Ae;Sonn, Jong-Kyung;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.91-97
    • /
    • 2003
  • The purpose of this study is to investigate the mechanism of inhibition of chondrogenic differentiation by X-irradiation. Cultures of chick limb bud mesenchymal cells were exposed to various dose of X-ray and chondrogenesis was examined. X-irradiation inhibited accumulation of proteoglycan based on the observation of alcian blue staining and expression of chondorcyte specific-type II collagen. X-irradiation also inhibited expression of protein kinase $C{\alpha}$ while expression of $PKC{\lambda}({\iota}),\;{\varepsilon}$ was not altered. Expression of Erk-1 was not changed by X-irradiation but phosphorylation of Erk-1 was increased. In addition, inhibition of Erk-1 phosphorylation by PD98059 overcame inhibitory effect of X-irradiation on the chondrogenic differentiation. PNA staining data showed that X-irradiation inhibited cellular aggregation. Taken together, these results suggest that X-irradiation inhibits chondrogenic differentiation by inhibiting cellular aggregation and suppressing expression of $PKC{\alpha}$ and promoting phosphorylation of Erk-1. In addition to above pathway, our results also suggest that X-irradiation may exerts its inhibitory effect by another signaling pathways.

  • PDF

Effects of Leptin on Osteoclast Generation and Activity

  • Ko, Seon-Yle;Cho, Sang-Rae;Kim, Se-Won;Kim, Jung-Keun
    • International Journal of Oral Biology
    • /
    • v.30 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • Leptin, the product of the obese gene, is a circulating hormone secreted primarily from adipocytes. Several results suggest that leptin is important mediators of bone metabolism. The present study was undertaken to determine the effects of leptin on anti-osteoclastogenesis using murine precursors cultured on Ca-P coated plates and on the production of osteoprotegerin (OPG) in osteoblastic cells. Additionally, this study examined the possible involvement of prostaglandin $E_2\;(PGE_2)$/protein kinase C (PKC)-mediated signals on the effect of leptin on anti-osteoclastogenesis to various culture systems of osteoclast precursors. Osteoclast generation was determined by counting tartrate-resistant acid phosphatase positive [TRAP (+)] multinucleated cells (MNCs). Osteoclastic activity was determined by measuring area of resorption pits formed by osteoclasts on Ca-P coated plate. The number of 1,25-dihydroxycholecalciferol $(1,25[OH]_2D_3)$- or $PGE_2$-induced TRAP (+) MNCs in the mouse bone marrow cell culture decreased significantly after treatment with leptin. The number of receptor activator of NF-kB ligand (RANKL)-induced TRAP (+) MNCs in M-CSF dependent bone marrow macrophage (MDBM) cell or RAW264.7 cell culture decreased significantly with leptin treatment. Indomethacin inhibited osteoclast generation induced by $1,25[OH]_2D_3$ and dexamethasone, however, no significant differences were found in the leptin treated group when compared to the corresponding indomethacin group. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited osteoclast generation induced by $1,25[OH]_2D_3$. The number of TRAP (+) MNCs decreased significantly with treatment by PMA at concentrations of 0.01 and $0.1{\mu}M$ in culture. Leptin inhibited PMA-mediated osteoclast generation. Isoquinoline-5-sulfonic 2-methyl-1-piperazide dihydrochloride (H7) had no effect on osteoclast generation induced by $1,25[OH]_2D_3$. Cell culture treatment with leptin resulted in no significant differences in osteoclast generation compared to the corresponding H7 group. Indomethacin showed no significant effect on TRAP (+) MNCs formation from the RAW264.7 cell line. PMA inhibited TRAP (+) MNCs formation induced by RANKL in the RAW264.7 cell culture. H7 had no effect on osteoclast generation from the RAW264.7 cell line. There was no difference compared with the corresponding control group after treatment with leptin. $1,25[OH]_2D_3$- or $PGE_2$-induced osteoclastic activity decreased significantly with leptin treatment at a concentration of 100 ng/ml in mouse bone marrow cell culture. Indomethacin, PMA, and H7 significantly inhibited osteoclastic activity induced by $1,25[OH]_2D_3$ in mouse bone marrow cell culture. No significant differences were found between the leptin treated group and the corresponding control group. The secretion of OPG, a substance known to inhibit osteoclast formation, was detected from the osteoblasts. Treatment by leptin resulted in significant increases in OPG secretion by osteoblastic cells. Taken these results, leptin may be an important regulatory cytokines within the bone marrow microenvironment.

Influence of Ginsenosides on the Kainic Acid-Induced Seizure Activity in Immature Rats

  • Park, Jin-Kyu;Jin, Sung-Ha;Choi, Keum-Hee;Ko, Ji-Hun;Baek, Nam-In;Choi, Soo-Young;Cho, Sung-Woo;Choi, Kang-Ju;Nam, Ki-Yeul
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.339-344
    • /
    • 1999
  • We studied the effects of ginsenosides in immature rats based upon the previous results that ginseng has a suppressive or anticonvulsive activity. To examine the suppressive effect of ginsenosides on kainic acid-induced seizures, the severities and frequencies were observed for 4 h after injection of kainic acid (KA; i.p., 2 mg/kg b.w.) using 10-day-old male Sprague-Dawley rats ($22{\pm}2\;g$). Protopanaxadiol saponins such as ginsenoside-Rb1 (Rb1), ginsenoside-Rb2 (Rb2), ginsenoside-Rc (Rc), and ginsenoside-Rd(Rd) generally reduced the seizure activities while protopanaxatriol saponins such as ginsenoside-Rg1 (Rg1) and ginsenoside-Re (Re) rather increased stereotypic "paddling-like" movements. When vinyl-GABA (v-G) was injected together with Rb1 or Rc, KA-induced seizure severities were additionally reduced only by the injection of Rc, but not by Rb1. The level of gamma isozyme of protein kinase C (PKC-${\gamma}$) in the hippocampus increased about three times as much as that of normal rats at 4 h after KA injection. The increased level of PCK-${\gamma}$ by KA was significantly reduced to about 35% by the coinjection with v-G alone, but it was not changed by v-G together with Rb1 or Rc. The increased level of PKC-${\gamma}$ at 4 h after injection of KA was not consistent with the reduction of seizure severities between Rb1 and Rc. These results suggest that Rc and Rb1 may reduce seizure severity independent of PKC-${\gamma}$ levels, and Rc may additionally act with v-G regarding the GABA metabolism during the stage of KA-induced seizures in the immature rats.

  • PDF