• Title/Summary/Keyword: Protein Kinase A and C

Search Result 1,263, Processing Time 0.028 seconds

Silencing of CaCDPK4 ( Capsicum annuum Calcium Dependent Protein Kinase) and ItsOrtholog, NbCDPK5 Induces Cell Death in Nicotiana benthamiana

  • Eunsook Chung;Kim, Young-Cheol;Oh, Sang-Keun;Younghee Jung;Kim, Soo-Yong;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.1-77
    • /
    • 2003
  • We have isolated a full-length cDNA clone, CaCDPK4 encoding a typical calcium-dependent protein kinase (CDPK) from hot pepper cDNA library. Genomic southern blot analysis showed that it belongs to a multigene family, but represents a single copy gone in hot pepper genome. RNA expression pattern of this gene revealed that it is induced by infiltration of Xanthomonas axonopodis pv. glycines Bra into hot pepper leaves but not by water deficit stress. However, high salt treatment of NaCl (0.4 M) solution to hot pepper plants strongly induced CaCDPK4 gene. In addition, this gene is weakly responsive to the exogenous application of salicylic acid or ethephon. Biochemical study of the GST-CaCDPK4 recominant protein showed that it autophosphorylates in vitro and the presence of EGTA, a calcium chelater, eliminates the kinase activity of the recombinant protein. As a way to identify the in vivo function of CaCDPK4 in plants, VIGS (Virus-Induced Gene Silencing) was employed. Agrobacterium-mediated TRV silencing construct containing the kinase and calmodulin domain of CaCDPK4 resulted in cell death of Nicotiana benthamiana plants. A highly homologous H benthamiana CDPK gene, NbCDPK5, to CaCDPK4 was cloned from N. benthamiana cDNA library. VIGS of NbCDPK5 also resulted in cell death. The molecular characterization of this cell death phenotype is being under investigation.

  • PDF

Multiple Regulation of Roundabout (Robo) Phosphorylation in a Heterologous Cell System

  • Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2004
  • Roundabout (Robo) is the transmembrane receptor for slit, the neuronal guidance molecule. In this study, the tyrosine phosphorylation of Robo was observed in Robo-transfected human embryonic kidney cells and developing rat brains, and found to be increased by the treatment with protein kinase A activator, forskolin. In contrast, protein kinase C activation by phorbol-12-myristate-13-acetate decreased the phosphorylation of Robo. Intracellular calcium was required for the tyrosine phosphorylation. Furthermore, the transfection of an Eph receptor tyrosine kinase dramatically enhanced the tyrosine phosphorylation. These findings indicate that the tyrosine phosphorylation of Robo is regulated by multiple mechanisms, and that Eph receptor kinases may play a role in the regulation of tyrosine phosphorylation of Robo in the rat brain.

Laminin-1 Phosphorylation by Protein Kinase A: Effect on self assembly and heparin binding

  • Koliakos, George;Kouzi-Koliakos, Kokkona;Triantos, Athanasios;Trachana, Varvara;Kavoukopoulos, Evaggelos;Gaitatzi, Mary;Dimitriadou, Aphrodite
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.370-378
    • /
    • 2000
  • Incubation of purified laminin1-nidogen1 complexes with $[{\gamma}-^{32}P]-ATP$ in the presence of the catalytic subunit of the protein kinase A (cAMP-dependent protein kinase) resulted in the phosphorylation of the alpha chain of laminin-1 and of the nidogen-1 molecule. Aminoacid electrophoresis indicated that phosphate was incorporated on serine residues. The phosphorylation effect of laminin-1 on the process of self assembly was studied by turbidometry. In these experiments, the phosphorylated laminin-1 showed a reduced maximal aggregation capacity in comparison to the non-phosphorylated molecule. Examination of the laminin-1 network under the electron microscope showed that the phosphorylated sample formed mainly linear extended oligomers, in contrast to controls that formed large and dense multimeric aggregates. Heparin binding on phosphorylated laminin-1 in comparison to controls was also tested using solid-phase binding assays. The results indicated an enhanced heparin binding to the phosphorylated protein. The results of this study indicate that laminin1-nidogen1 is a substrate for protein kinase A in vitro. This phosphorylation had an obvious influence on the lamininl-nidogen1 network formation and the heparin binding capacity of this molecule. However, further studies are needed to investigate whether or not this phenomenon could play a role in the formation of the structure of basement membranes in vivo.

  • PDF

Purification and Spectroscopic Characterization of the Human Protein Tyrosine Kinase-6 SH3 Domain

  • Koo, Bon-Kyung;Kim, Min-Hyung;Lee, Seung-Taek;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.343-347
    • /
    • 2002
  • The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of $\beta$-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.

Phorbol 12-Myristate 13-Acetate Enhances Long-Term Potentiation in the Hippocampus through Activation of Protein Kinase $C{\delta}$ and ${\varepsilon}$

  • Kim, Eung Chang;Lee, Myeong Jong;Shin, Sang Yep;Seol, Geun Hee;Han, Seung Ho;Yee, Jaeyong;Kim, Chan;Min, Sun Seek
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • Many intracellular proteins and signaling cascades contribute to the sensitivity of N-methyl-D-aspartate receptors (NMDARs). One such putative contributor is the serine/threonine kinase, protein kinase C (PKC). Activation of PKC by phorbol 12-myristate 13-acetate (PMA) causes activation of extracellular signal-regulated kinase (ERK) and promotes the formation of new spines in cultured hippocampal neurons. The purpose of this study was to examine which PKC isoforms are responsible for the PMA-induced augmentation of long-term potentiation (LTP) in the CA1 stratum radiatum of the hippocampus in vitro and verify that this facilitation requires NMDAR activation. We found that PMA enhanced the induction of LTP by a single episode of theta-burst stimulation in a concentration-dependent manner without affecting to magnitude of baseline field excitatory postsynaptic potentials. Facilitation of LTP by PMA (200 nM) was blocked by the nonspecific PKC inhibitor, Ro 31-8220 ($10{\mu}M$); the selective $PKC{\delta}$ inhibitor, rottlerin ($1{\mu}M$); and the $PKC{\varepsilon}$ inhibitor, TAT-${\varepsilon}V1$-2 peptide (500 nM). Moreover, the NMDAR blocker DL-APV ($50{\mu}M$) prevented enhancement of LTP by PMA. Our results suggest that PMA contributes to synaptic plasticity in the nervous system via activation of $PKC{\delta}$ and/or $PKC{\varepsilon}$, and confirm that NMDAR activity is required for this effect.

Effects of TPA and IAA on Corn Coleoptile Elongation (옥수수 자엽초의 신장에 미치는 TPA와 IAA의 효과)

  • 정은수
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.77-84
    • /
    • 1992
  • In view of the well-established role of protein kinase C effector element in signal transduction of animal systems, the possibility of diacylglycerol (DAG) and its analog 12-O-tetradecanoylphorbol13-acetate (TPA) having an effect on auxin-induced growih of com coleoptiles was explored. Both DAG and TP A were found to promote cell elongation in the coleoptile tissue_ Treatment of tissue with these protein kinase C-activating agents resulted in increase in the growth rate over the control by about 300%. When 1M was applied to TPA-pretreated coleoptiles. auxin effect appeared synergistic. Morever. coleoptile growth was found to be inhibited by staurosporine and methylated TPA, both of which are known to specifically inhibit protein kinase C. Electrophoretic and autoradiographic patterns of soluble proteins from the coeoptiles indicated that either 1M or TPA tereatment resulted in increased phosphorylation of certain proteins of 205 Kd. 66 Kd and 32 Kd in size. The results obtained from the present work suggest that protein kinase C may be associated with auxin action on cell elongation in the corn coleoptile segments.gments.

  • PDF

CDK2AP1, a Cyclin-Dependent Kinase 2-Associated Protein, Interacts with Kinesin-1 through Kinesin Superfamily Protein 5A (KIF5A) (Cyclin-dependent kinase 1 결합 단백질 CDK2AP1은 kinesin superfamily protein 5A (KIF5A)을 매개로 Kinesin-1와 결합)

  • Myoung Hun Kim;Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.531-537
    • /
    • 2023
  • Intracellular and axonal transport is mediated by microtubule-dependent motor proteins, such as kinesins and cytoplasmic dynein. Kinesin moves along the microtubule to the positive end of the microtubule, while dynein moves to the negative end of the microtubule. Kinesin-1 was first identified as a kinesin superfamily protein (KIF) that functions in the intracellular transport of various cargoes, including organelles, neurotransmitter receptors, and mRNA-protein complexes, through interactions between the carboxyl (C)-terminal domain and the cargo. It interacts with other cargoes, but the adapter/scaffold proteins that mediate between kinesin-1 and the cargo have yet to be fully identified. In this study, a yeast two-hybrid screen was used to identify adapter proteins that interact with the C-terminal region of KIF5A. We found an association between the C-terminal region of KIF5A and the cyclin-dependent kinase 2-associated protein 1 (CDK2AP1), originally identified in malignant hamster oral keratinocytes. CDK2AP1 bound to the C-terminal region of KIF5A and did not interact with KIF3A (the motor of kinesin-2), KIF5B, KIF5C, and kinesin light chain 1 (KLC1). The C-terminal region of CDK2AP1 is essential for its interaction with KIF5A. When co-expressed in HEK-293T cells, CDK2AP1 and kinesin-1 co-immunoprecipitated and co-localized in the cells. These results suggest that the KIF5A-CDK2AP1 interaction serves as an adapter protein connecting kinesin-1 and the cargo when kinesin-1 transports cargo in cells.

Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

  • Son, Sihoon;Kim, Kyoung-Tae;Cho, Dae-Chul;Kim, Hye-Jeong;Sung, Joo-Kyung;Bae, Jae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Objective : The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods : We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun $NH_2$-terminal kinases (JNKs) and ${\beta}$-actin as the control group. Results : Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, $1{\mu}M$) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and $1{\mu}M$, p<0.05). Conclusion : Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations.

Inhibitory Effects of Water Extract from Rice Bran Due to cAMP-dependent Phosphorylation of VASP ($Ser^{157}$) on ADP-induced Platelet Aggregation

  • Kim, Hyun-Hong;Hong, Jeong Hwa;Ingkasupart, Pajaree;Lee, Dong-Ha;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.129-138
    • /
    • 2014
  • In this study, we investigated the effect of water extract from rice bran (RB) on ADP ($20{\mu}M$)-stimulated platelet aggregation. RB dose-dependently inhibited ADP-induced platelet aggregation, and its $IC_{50}$ value was $224.0{\mu}g/mL$, which was increased by adenylate cyclase inhibitor SQ22536 and cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS. RB elevated the phosphorylation of VASP ($Ser^{157}$) which was also inhibited by SQ22536 and Rp-8-Br-cAMPS. It is thought that RB-elevated cAMP contributed to the phosphorylation of VASP ($Ser^{157}$) to inhibit ADP-induced platelet aggregation. Therefore, we demonstrate that RB has an antiplatelet effect via cAMP-dependent phosphorylation of VASP ($Ser^{157}$), and RB may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Discovery of Cyclin-dependent Kinase Inhibitor, CR229, Using Structure-based Drug Screening

  • Kim, Min-Kyoung;Min, Jae-Ki;Choi, Bu-Young;Lim, Hae-Young;Cho, Youl-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1712-1716
    • /
    • 2007
  • To generate new scaffold candidates as highly selective and potent cyelin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 ($IC_{50}:\;3\;{\mu}M$), CDKI ($IC_{50}:\;4.9\;{\mu}M$), and CDK4 ($IC_{50}:\;3\;{\mu}M$), yet had much less inhibitory effect ($IC_{50}:>20\;{\mu}M$) on other kinases, such as casein kinase 2-${\alpha}1$ (CK2-${\alpha}1$), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.