DOI QR코드

DOI QR Code

Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

  • Son, Sihoon (Department of Neurosurgery, Kyungpook National University Hospital) ;
  • Kim, Kyoung-Tae (Department of Neurosurgery, Kyungpook National University Hospital) ;
  • Cho, Dae-Chul (Department of Neurosurgery, Kyungpook National University Hospital) ;
  • Kim, Hye-Jeong (Department of Neurosurgery, Kyungpook National University Hospital) ;
  • Sung, Joo-Kyung (Department of Neurosurgery, Kyungpook National University Hospital) ;
  • Bae, Jae-Sung (Department of Physiology, School of Medicine, Kyungpook National University)
  • 투고 : 2014.04.01
  • 심사 : 2014.07.15
  • 발행 : 2014.07.28

초록

Objective : The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods : We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun $NH_2$-terminal kinases (JNKs) and ${\beta}$-actin as the control group. Results : Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, $1{\mu}M$) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and $1{\mu}M$, p<0.05). Conclusion : Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations.

키워드

참고문헌

  1. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD : A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2 : 287-293, 2001 https://doi.org/10.1038/35067582
  2. Arias-Carrion O, Olivares-Bunuelos T, Drucker-Colin R : [Neurogenesis in the adult brain]. Rev Neurol 44 : 541-550, 2007
  3. Basnet P, Skalko-Basnet N : Curcumin : an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16 : 4567-4598, 2011 https://doi.org/10.3390/molecules16064567
  4. Calabrese V, Butterfield DA, Stella AM : Nutritional antioxidants and the heme oxygenase pathway of stress tolerance : novel targets for neuroprotection in Alzheimer's disease. Ital J Biochem 52 : 177-181, 2003
  5. Chen CW, Liu CS, Chiu IM, Shen SC, Pan HC, Lee KH, et al. : The signals of FGFs on the neurogenesis of embryonic stem cells. J Biomed Sci 17 : 33, 2010 https://doi.org/10.1186/1423-0127-17-33
  6. Dent P : Crosstalk between ERK, AKT, and cell survival. Cancer Biol Ther 15 : 245-246, 2014 https://doi.org/10.4161/cbt.27541
  7. Gangwal RP, Bhadauriya A, Damre MV, Dhoke GV, Sangamwar AT : p38 Mitogen-activated protein kinase inhibitors : a review on pharmacophore mapping and QSAR studies. Curr Top Med Chem 13 : 1015-1035, 2013 https://doi.org/10.2174/1568026611313090005
  8. Geest CR, Coffer PJ : MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86 : 237-250, 2009 https://doi.org/10.1189/jlb.0209097
  9. Gupta SC, Kismali G, Aggarwal BB : Curcumin, a component of turmeric : from farm to pharmacy. Biofactors 39 : 2-13, 2013 https://doi.org/10.1002/biof.1079
  10. Gupta SC, Patchva S, Koh W, Aggarwal BB : Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39 : 283-299, 2012 https://doi.org/10.1111/j.1440-1681.2011.05648.x
  11. Joe B, Vijaykumar M, Lokesh BR : Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44 : 97-111, 2004 https://doi.org/10.1080/10408690490424702
  12. Jurenka JS : Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa : a review of preclinical and clinical research. Altern Med Rev 14 : 141-153, 2009
  13. Kim JH, Park SH, Nam SW, Kwon HJ, Kim BW, Kim WJ, et al. : Curcumin stimulates proliferation, stemness acting signals and migration of 3T3-L1 preadipocytes. Int J Mol Med 28 : 429-435, 2011
  14. Kim KT, Kim MJ, Cho DC, Park SH, Hwang JH, Sung JK, et al. : The neuroprotective effect of treatment with curcumin in acute spinal cord injury : laboratory investigation. Neurol Med Chir (Tokyo) 54 : 387-394, 2014 https://doi.org/10.2176/nmc.oa.2013-0251
  15. Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS, et al. : Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283 : 14497-14505, 2008 https://doi.org/10.1074/jbc.M708373200
  16. Kwon BK, Fisher CG, Dvorak MF, Tetzlaff W : Strategies to promote neural repair and regeneration after spinal cord injury. Spine (Phila Pa 1976) 30 (17 Suppl) : S3-S13, 2005
  17. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR : Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4 : 451-464, 2004 https://doi.org/10.1016/j.spinee.2003.07.007
  18. Li J, Lepski G : Cell transplantation for spinal cord injury : a systematic review. Biomed Res Int 2013 : 786475, 2013
  19. Liu RH, Morassutti DJ, Whittemore SR, Sosnowski JS, Magnuson DS : Electrophysiological properties of mitogen-expanded adult rat spinal cord and subventricular zone neural precursor cells. Exp Neurol 158 : 143-154, 1999 https://doi.org/10.1006/exnr.1999.7078
  20. Liu ZQ, Xing SS, Zhang W : Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion. J Spinal Cord Med 36 : 147-152, 2013 https://doi.org/10.1179/2045772312Y.0000000028
  21. Lo V, Esquenazi Y, Han MK, Lee K : Critical care management of patients with acute spinal cord injury. J Neurosurg Sci 57 : 281-292, 2013
  22. Lodha R, Bagga A : Traditional Indian systems of medicine. Ann Acad Med Singapore 29 : 37-41, 2000
  23. McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ : Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 19 : 165-172, 2007
  24. Menard C, Hein P, Paquin A, Savelson A, Yang XM, Lederfein D, et al. : An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36 : 597-610, 2002 https://doi.org/10.1016/S0896-6273(02)01026-7
  25. Mujoo K, Nikonoff LE, Sharin VG, Bryan NS, Kots AY, Murad F : Curcumin induces differentiation of embryonic stem cells through possible modulation of nitric oxide-cyclic GMP pathway. Protein Cell 3 : 535-544, 2012 https://doi.org/10.1007/s13238-012-2053-2
  26. Nakamura M, Okano H : Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 23 : 70-80, 2013 https://doi.org/10.1038/cr.2012.171
  27. Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA : Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 59 : 68-81, 2011 https://doi.org/10.1002/glia.21077
  28. Shehzad A, Lee YS : Molecular mechanisms of curcumin action : signal transduction. Biofactors 39 : 27-36, 2013 https://doi.org/10.1002/biof.1065
  29. Suh HW, Kang S, Kwon KS : Curcumin attenuates glutamate-induced HT22 cell death by suppressing MAP kinase signaling. Mol Cell Biochem 298 : 187-194, 2007 https://doi.org/10.1007/s11010-006-9365-6
  30. Tederko P, Krasuski M, Kiwerski J, Nyka I, Bialoszewski D : Repair therapies in spinal cord injuries. Ortop Traumatol Rehabil 11 : 199-208, 2009
  31. Wade A, McKinney A, Phillips JJ : Matrix regulators in neural stem cell functions. Biochim Biophys Acta 1840 : 2520-2525, 2014 https://doi.org/10.1016/j.bbagen.2014.01.017
  32. Zhang X, Yin WK, Shi XD, Li Y : Curcumin activates Wnt/${\beta}$-catenin signaling pathway through inhibiting the activity of GSK-$3{\beta}$ in APPswe transfected SY5Y cells. Eur J Pharm Sci 42 : 540-546, 2011 https://doi.org/10.1016/j.ejps.2011.02.009

피인용 문헌

  1. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin vol.23, pp.1, 2014, https://doi.org/10.1186/s40199-015-0115-8
  2. The Potential of Curcumin in Treatment of Spinal Cord Injury vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/9468193
  3. Temozolomide inhibits cellular growth and motility via targeting ERK signaling in glioma C6 cells vol.14, pp.6, 2014, https://doi.org/10.3892/mmr.2016.5964
  4. Investigating the use of curcumin-loaded electrospun filaments for soft tissue repair applications vol.12, pp.None, 2017, https://doi.org/10.2147/ijn.s133326
  5. Curcumin Increase the Expression of Neural Stem/Progenitor Cells and Improves Functional Recovery after Spinal Cord Injury vol.61, pp.1, 2018, https://doi.org/10.3340/jkns.2017.0203.003
  6. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury? vol.13, pp.1, 2014, https://doi.org/10.4103/1673-5374.224379
  7. Hormetic effects of curcumin: What is the evidence? vol.234, pp.7, 2019, https://doi.org/10.1002/jcp.27880
  8. Curcumin, Hormesis and the Nervous System vol.11, pp.10, 2014, https://doi.org/10.3390/nu11102417
  9. Stem Cell Therapy: Curcumin Does the Trick vol.33, pp.11, 2014, https://doi.org/10.1002/ptr.6482
  10. Combination of curcumin with autologous transplantation of adult neural stem/progenitor cells leads to more efficient repair of damaged cerebral tissue of rat vol.105, pp.9, 2014, https://doi.org/10.1113/ep088697
  11. Traditional Chinese Medicine Monomers: Novel Strategy for Endogenous Neural Stem Cells Activation After Stroke vol.15, pp.None, 2014, https://doi.org/10.3389/fncel.2021.628115
  12. Hormesis and neural stem cells vol.178, pp.None, 2022, https://doi.org/10.1016/j.freeradbiomed.2021.12.003