• Title/Summary/Keyword: Protein Crosslinking

Search Result 36, Processing Time 0.028 seconds

Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

  • Kang, Jung Hoon
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.555-560
    • /
    • 2013
  • Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments.

Effects of Heat Treatment on Protein Quality as Lysine Damage (열처리가 Lysine 손상에 의한 단백질의 품질에 미치는 영향)

  • 이경혜
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.816-828
    • /
    • 1995
  • During the industrial preparation and the storage of foods, the side chain of some protein-bound amino acids can react chemically each other or with other molecules present in the food. The following reactions have been described : destruction of amino acids, racemization, protein-protein interactions, reactions of proteins with reducing sugars, oxidizing agents, or polyphenols. Apart from total destruction, the main reacitons are the forming of Maillard reactions products(e.g. fructoselysine) and the crosslinking with other amino acids in the same or in another protein molecule(e.g. lysinoalanine). The most often involved amino acid is lysine because of its free functional ${\varepsilon}-amino$ acid group. Generally derivatives of amino acids or crosslinks in polypeptides influence the bioavailability and the overall digestibility of the protein. This work reviews the technological, analytical, nutritional, and physiological problems related to the formation of fructoselysine and lysinolalnine in human foods, and evaluates the possible health risk for humans. A summary of the available information is of help in considering whether or not the presence of fructoselysine/lysinoalanine in foods represents a danger to man. The reduction in protein quality through these reactions is not a problem for the general population, but it is extremely important in infant foods, since infants are often nourished with a limited number of food product(e.g. formular foods) which are sensitive to the Mailard reaction.

  • PDF

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF

Covalent Interactions of Toluenediisocyanate with DNA and Proteins

  • Jeong, Yo-Chan;Park, Misun;Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • The covalent interactions of toluenediisocyanate (TDI) with macromolecules were investigated both in vitro and in vivo. In vitro incubations of 2,4- and 2,6-TDI with DNA or proteins resulted in dose-dependent formation of TDI-protein and TDI-DNA adducts. TDI-treated DNA was highly resistant to enzymatic digestion and thermal hydrolysis, but was readily hydrolyzed under acidic conditions by releasing its corresponding toluenediamine (TDA), suggesting that TDI caused the crosslinking of DNA. Reaction of TDI with albumin and globin resulted in the formation of several adducts, and some adducts were formed in blood of TDI-treated rats in a dose-dependent fashion. Administration of TDI to rats resulted also in a dose-dependent binding of TDI to hepatic tissue. Levels of TDI-albumin adducts were 10 times higher than those of TDI-globin adducts; the biological half lives of TDI-albumin and TDI-globin adducts were 1.2 and 12.5 days, respectively. Globin adducts were detected up to 28 days after the treatment. Hepatic TDI protein adducts were persistent for a substantial period whereas the levels of hepatic TDI-DNA adduct were decreased rapidly. These results indicate that the isocyanato group of TDI is not readily hydrolyzed under physiological conditions, is transported to other organs, and is bound to DNA and/or proteins without further metabolic activation. As the adducted products degrade in the body, TDA is released and introduced to the liver. TDA may additionally bind to hepatic tissue after metabolic activation. Thus, the toxic effect of TDI exposure is considered to persist during the lifetime of the adducted biological macromolecules.

  • PDF

Performance Improvement of Glucose Sensor Adopting Enzymatic Catalyst bonded by Glutaraldehyde (글루타알데하이드에 의해 결합된 효소촉매를 이용한 글루코스 센서의 성능향상)

  • AHN, YEONJOO;CHUNG, YONGJIN;LEE, KYUBIN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • In this study, we synthesized a biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of glutaraldehyde (GA)(GA/[GOx/PEI/CNT])for fabrication of glucose sensor. Main bonding of the GA/[GOx/PEI/CNT] catalyst was formed by crosslinking of functional end groups between GOx/PEI and GA. Catalytic activity of GA/[GOx/PEI/CNT] was quantified by UV-Vis and electrochemical measurements. As a result of that, high immobilization ratio of 199% than other catalyst (with only physical adsorption) and large sensitivity value of $13.4{\mu}A/cm^2/mM$ was gained. With estimation of the biosensor stability, it was found that the GA/[GOx/PEI/CNT] kept about 88% of its initial activity even after three weeks. It shows GA minimized the loss of GOx and improved sensing ability and stability compared with that using other biocatalysts.

Application of Transglutaminase for Hair Revitalization (모발 개선을 위한 Transglutaminase의 적용)

  • Kim, Yun Seog;Park, Su Jin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The use of protein-crosslinking enzyme, transglutaminase, as a biocatalyst in the processing of hair offers a variety of exciting and realistic possibilities which include improving the rigidity of hair fibers. Among the transglutaminases from many different living organisms, the microbial enzyme prepared from Streptomyces mobaraensis, significantly increased the tensile strength of hair by 15.64% compared to a control when it was applied to damaged hair. This indicates that transglutaminase can restore the negative effects of washing hair with shampoo. Also transglutaminase improved the characteristics of hair surface, which could be useful for increase of luster and reduction of friction force of hair surfaces.

Inconsistency in the Improvements of Gel Strength in Chicken and Pork Sausages Induced by Microbial Transglutaminase

  • Kawahara, S.;Ahhmed, A.M.;Ohta, K.;Nakade, K.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1285-1291
    • /
    • 2007
  • This research investigated variation in the improvement of the texture of chicken and pork sausages induced by microbial transglutaminase (MTG). The extractability of myofibrillar proteins from these sausages as well as the ${\varepsilon}-({\gamma}-glutamyl)$lysine (G-L) content were also investigated. MTG treatment of sausages significantly increased the breaking strength values in both meat types, especially for samples incubated at $40^{\circ}C$. However, values of the breaking strength in both meat types were increased differently. The variation in protein extractability of samples incubated at $40^{\circ}C$ for both meat types could lead to some consideration of the mechanisms and the high accessions of myosin heavy chain (MHC) to MTG. SDS-PAGE analysis showed significant changes in the density of the bands after adding MTG, especially for the pork samples in which the bands disappeared totally. The G-L content in the presence of MTG was double that in control samples of both meat types. This study suggests that the binding ability of myofibrillar proteins with MTG is strong. This leads us to suggest that MTG functions positively with different improvements in the texture of chicken and pork products that are treated mechanically, such as sausages. Variability in gel improvement level between chicken and pork sausages was observed; this resulted from the variation in meat proteins in response to MTG, as well as to the original glutamyl and lysine content.

Electron Microscopical Observation of Transglutaminase-treated Ultra High Temperature Milk Sedimiment (Transglutaminase로 처리한 초고온 살균유 침전물의 전자현미경적 관찰)

  • Moon, Jeong-Han;Hong, Youn-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1359-1366
    • /
    • 2004
  • Ultra high temperature treated (UHT) skim milk and colloidal calcium phosphate-free skim milk were treated with microbial transglutaminase (TGase), ultracentrifuged at various rates, lyophilized, and observed for morphological properties with a scanning electron microscope (SEM). UHT skim milk showed small holes of associated micelles at lower centrifugal rates, and became thick and irregular, and fine particles were associated regularly at higher centrifugal rates. When UHT skim milk with TGase was incubated for 1 hour, casein micelles aggregated and broadened as centrifugation rate increased. When UHT skim milk with TGase was incubated for 8 hours, casein micelles were associated irregularly to large aggregates and widened. Colloidal calcium phosphate-free skim milk with TGase incubated for 1 hour and separated by two-step centrifugation showed aggregated lump, while the milk incubated for 8 hours with TGase was associated with broadened, compact, and regular layers as the centrifugation rate increased. Such phenomena were caused by heat treatment, protein crosslinking reaction catalyzed by TGase and conformational changes of casein molecules, and could be dependent on reaction time, temperature and ultracentrifugation rate.

Importance of Oxidative Stress in Ocular Dysfunction (안구의 기능이상에 대한 산화스트레스의 중요성)

  • Lee, Ji Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.103-109
    • /
    • 2008
  • Purpose: This review illustrates an importance of oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation in association with eye disease, especially of cataract, and discusses an important role of lipid peroxide as a mediator of oxidative stress-related ocular dysfunction. Methods: Oxidative stress, resulted from the cellular production of ROS and RNS, is known to cause various forms of cellular damages such as protein oxidation, DNA breaks, apoptosis, and lipid peroxidation. These damages can be developed to human diseases. Accumulating evidence strongly suggests that continuous or constant exposure of eye tissues to oxidative stress is a main cause of cataractogenesis. Therefore, we investigated the action of oxidative stress in ocular dysfunction. Results: The ocular lens is continuously attacked by ROS inevitable generated from the process of cellular metabolism and the chronic exposure to ultraviolet. Excessive generation of ROS, resulting in degradation, oxidation, crosslinking and aggregation of lens proteins, is regarded as an important factor in development of cataract. Conclusions: These oxidative stress and oxidant/antioxidant imbalance produces the excess ROS which can lead to eye dysfunction. Even though known results, it should be noted that there is limited information on the molecular mechanism which can be better defined with the interrelation of oxidative stress and optic abnormalities.

  • PDF

Different Functional and Structural Characteristics between ApoA-I and ApoA-4 in Lipid-Free and Reconstituted HDL State: ApoA-4 Showed Less Anti-Atherogenic Activity

  • Yoo, Jeong-Ah;Lee, Eun-Young;Park, Ji Yoon;Lee, Seung-Taek;Ham, Sihyun;Cho, Kyung-Hyun
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.573-579
    • /
    • 2015
  • Apolipoprotein A-I and A-IV are protein constituents of high-density lipoproteins although their functional difference in lipoprotein metabolism is still unclear. To compare anti-atherogenic properties between apoA-I and apoA-4, we characterized both proteins in lipid-free and lipidbound state. In lipid-free state, apoA4 showed two distinct bands, around 78 and $67{\AA}$ on native gel electrophoresis, while apoA-I showed scattered band pattern less than $71{\AA}$. In reconstituted HDL (rHDL) state, apoA-4 showed three major bands around $101{\AA}$ and $113{\AA}$, while apoA-I-rHDL showed almost single band around $98{\AA}$ size. Lipid-free apoA-I showed 2.9-fold higher phospholipid binding ability than apoA-4. In lipid-free state, $BS_3$-crosslinking revealed that apoA-4 showed less multimerization tendency upto dimer, while apoA-I showed pentamerization. In rHDL state (95:1), apoA-4 was existed as dimer as like as apoA-I. With higher phospholipid content (255:1), five apoA-I and three apoA-4 were required to the bigger rHDL formation. Regardless of particle size, apoA-I-rHDL showed superior LCAT activation ability than apoA-4-rHDL. Uptake of acetylated LDL was inhibited by apoA-I in both lipid-free and lipid-bound state, while apoA-4 inhibited it only lipid-free state. ApoA-4 showed less anti-atherogenic activity with more sensitivity to glycation. In conclusion, apoA-4 showed inferior physiological functions in lipid-bound state, compared with those of apoA-I, to induce more pro-atherosclerotic properties.