• Title/Summary/Keyword: Protein Content

Search Result 6,151, Processing Time 0.04 seconds

Effects of Carbohydrate, Protein and Lipid Content of Substrate on Hydrogen Production and Microbial Communities (탄수화물, 단백질, 지방 함량에 따른 혐기성 수소 발효시 부산물 및 미생물 군집 특성 평가)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.440-446
    • /
    • 2017
  • This study was aimed at evaluating the effects of carbohydrate, protein and lipid content of substrate on hydrogen yields and microbial communities. The hydrogen yields were linearly correlated to carbohydrate content of substrates while others (content of proteins and lipids) did not make a significant contribution. The chemical composition of substrates produced effects on the final products of anaerobic hydrogen fermentation. Acetate and butyrate were the main fermentation products, with their concentration proving to correlate with carbohydrate and protein content of substrates. The result of microbial community analysis revealed that the relative abundances of Clostridium butyricum increased and Clostridium perfringens decreased as the carbohydrate content increased.

GENOTYPIC AND PHENOTYPIC CORRELATIONS IN A SOYBEAN CROSS

  • Shin-Han Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.1 no.1
    • /
    • pp.42-45
    • /
    • 1963
  • In a plant breeding program, an efficient selection of desired characters in a population is important. Generally, many agronomic characters in a given population are determined by polygenes and quantitatively inherited. In practice, the genetic relationship between two observed characters which are undoubtedly subjected to the environmental influence is difficult to identify. In recent years, many workers have attempted to understant the genetic relationship between characters in terms of genotypic correlation, and the knowledge thus gained should furnish many important and useful information for the planning of breeding, selection, and interpretation of the result. The genotypic correlation is the result of pleiotropy, linkage of genes(2, 3, 5, 6, 8) and natural or artificial selection(4). The purposes of this study were to estimate genotyric and phenotypic correlations between all possible pairs of nine characters. and to seek certain characters which may be useful as indicators of certain important agronomic characters. Weber and Moorthy(10), Johnson et al. (5) and Sheth(7) found that in general, the genotypic correlations were higher than the phenotypic correlations. Weiss et al. (11) obtained significant positive correlations between maturity and oil content, maturity and low protein content, and high protein content and low oil content. Weber and Moorthy(10) reported the positive genotypic correlations between flowering and maturity, yield and maturity, yield and plant height, yield and seed weight, and negative genotypic correlations between maturity and oil content, and oil content and seed weight. Johnson et al. (5) studied the genotypic and phenotypic correlations among 24 characters and concluded that selection based entirely on a long fruiting period, lateness, heavy seed, low protein, high oil and resistance to lodging would be effective in increasing yield. Sheth(7) found the following positive associations among characters; height and maturity, yield and lodging, low protein content and high oil content, and yield and low protein content. Hanson et al.(1) also reported high negative correlation between seed yield and protein content.

  • PDF

Dynamic changes and characterization of the protein and carbohydrate fractions of native grass grown in Inner Mongolia during ensiling and the aerobic stage

  • Du, Zhumei;Risu, Na;Gentu, Ge;Jia, Yushan;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.556-567
    • /
    • 2020
  • Objective: To improve the utility of native grass resources as feed in China, we investigated the dynamics of protein and carbohydrate fractions among Inner Mongolian native grasses, during ensiling and the aerobic stage, using the Cornell Net Carbohydrate and Protein System. Methods: Silages were prepared without or with lactic acid bacteria (LAB) inoculant. We analyzed the protein and carbohydrate fractions and fermentation quality of silages at 0, 5, 15, 20, 30, and 60 d of ensiling, and the stability at 0.5, 2, 5, and 10 d during the aerobic stage. Results: Inner Mongolian native grass contained 10.8% crude protein (CP) and 3.6% water-soluble carbohydrates (WSC) on a dry matter basis. During ensiling, pH and CP and WSC content decreased (p<0.05), whereas lactic acid and ammonia nitrogen (N) content increased (p<0.05). Non-protein N (PA) content increased significantly, whereas rapidly degraded true protein (PB1), intermediately degraded true protein (PB2), total carbohydrate (CHO), sugars (CA), starch (CB1), and degradable cell wall carbohydrate (CB2) content decreased during ensiling (p<0.05). At 30 d of ensiling, control and LAB-treated silages were well preserved and had lower pH (<4.2) and ammonia-N content (<0.4 g/kg of fresh matter [FM]) and higher lactic acid content (>1.0% of FM). During the aerobic stage, CP, extract ether, WSC, lactic acid, acetic acid, PB1, PB2, true protein degraded slowly (PB3), CHO, CA, CB1, and CB2 content decreased significantly in all silages, whereas pH, ammonia-N, PA, and bound true protein (PC) content increased significantly. Conclusion: Control and LAB-treated silages produced similar results in terms of fermentation quality, aerobic stability, and protein and carbohydrate fractions. Inner Mongolian native grass produced good silage, nutrients were preserved during ensiling and protein and carbohydrate losses largely occurred during the aerobic stage.

Effect of Growth Retardants on Free Sugar and Protein Content of Sedirea japonica Seedlings Cultured In Vitro (생장억제제 처리가 기내 배양한 나도풍란 (Sedirea japonica) 유묘의 유리당 및 단백질 함량에 미치는 영향)

  • Cho Dong-Hoon;Jee Sun-Ok
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.145-149
    • /
    • 2005
  • This experiment was conducted to identify the effect of several plant growth retardants on changes of endogenous free sugar and protein content in seedlings of Sedirea japonica cultured in vitro. The content of free sugar in the leaf was decreased as the treated growth retardant concentration was increased. Glucose content was higher than fructose and sucrose content in the leaf. Free sugar content of the root was increased as concentrations of growth retardants were increased. Sucrose content was higher compared with the content of fructose and glucose. The content of protein in the leaf was decreased as the growth retardants concentration was increased, but the tendency of protein content in the root was contrary to that in the leaf.

QTL Mapping for Protein Content Derived from a Cross between oryza sativa and Weedy Rice

  • Ju-Won Kang;Ji-Yoon Lee;Gi-Un Seong;Youngho Kwon;So-Myeong Lee;Dong Jin Shin;Sais-Beul Lee;Hyunnggon Mang;Dong Soo Park;Jong-Hee Lee;Jun-Hyeon Cho;Gi-Won Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.268-268
    • /
    • 2022
  • Protein is a major nutrient of food and has long been studied for nutritional and utility value. Among them, rice protein is attracting attention because of its hypoallergenic characteristics and nutritional value. Mutant DM225 with increased protein content was selected by EMS treatment on the weed rice Dharial. QTL analysis of Protein content was carried out using BC2F2 populations derived from a cross between "Hanareum2" as a recurrent parent and "DM225" as a donor parent. The protein content of populations was between 5~11%, with an average of 7.7%. To identify QTLs related to Protein content, 117 KASP markers(polymorphic ratio: 15%) showing polymorphisms between the parents were genotyped for the BC2F2 population. One QTL was detected between markers SK07 06 and SK07_10 on chromosome 7(LOD: 28.1). This QTL explained 71.4% of the phenotypic variance for Protein content. This QTL will be useful for protein-related rice breeding program.

  • PDF

Managing Within-Field Spatial Yield Variation of Rice by Site-Specific Prescription of Panicle Nitrogen Fertilizer

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.238-246
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.

SPATIAL YIELD VARIABILITY AND SITE-SPECIFIC NITROGEN PRESCRIPTION FOR THE IMPROVED YIELD AND GRAIN QUALITY OF RICE

  • Lee Byun-Woo;Nguyen Tuan Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.57-74
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, the two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if prescribed N for site-specific fertilizer management at panicle initiation stage (VRT) could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, ,33 kg N/ha at PIS) method. The trial field was subdivided into two parts and each part was subjected to UN and VRT treatment. Each part was schematically divided in $10\times10m$ grids for growth and yield measurement or VRT treatment. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for this calculation were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with average of 57kg/ha that was higher than 33kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%\;and\;7.1\%$ in VRT from $14.6\%\;and\;13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. Although N use efficiency of VRT compared to UN was not quantified due to lack of no N control treatment, the procedure used in this paper for VRT estimation was believed to be reliable and promising method for managing within-field spatial variability of yield and protein content. The method should be received further study before it could be practically used for site-specific crop management in large-scale rice field.

  • PDF

Comparison of the Quality Characteristics of the Rice yield Trial Lines in the Central Plain Region for Four Years

  • Jeong Heui Lee;Jieun Kwak;Hyun-Jin Park;You-Geun Oh;Jeom-Sig Lee;Yu-Chan Choi;Seon-Min Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.325-325
    • /
    • 2022
  • In order to developing high-quality rice varieties and processing varieties, systematic and stable evaluation of physicochemical properties is required for breeding lines. In this study, we compared the quality characteristics evaluation results of rice breeding lines for cooked rice, special rice, and whole crop silage rice adapted to central plain region (Suwon) in order to use as basic data for future rice variety development. Brown rice length/width ratio, head rice ratio, protein content, amylose content, alkali digestion value(ADV) and Toyo value were analyzed to evaluate the quality characteristics of yield trial lines cultivated in Suwon for four years (2017-2020). Brown rice length/width ratio, head rice ratio, protein content, ADV and Toyo values showed significant differences by year, but there was no significant difference in amylose content (p<0.05), which showed little environmental variation. The head rice ratio and Toyo value showed an increasing trend, while the protein content showed a decreasing trend. However, the protein content was the highest in 2020, which is thought to be owing to little sunlight hours due to heavy rainfall in 2020. The protein content of whole crop silage rice was 8.1%, which was significantly higher than that of other lines (p<0.05). Toyo value of medium-maturing and early-maturing lines were 67.6 and 73.7%, respectively, and the Toyo value of medium-maturing lines was higher than that of the early-maturing lines (p<0.05). In correlation analysis among the quality characteristics of the rice lines for cooked rice, significant positive correlations were detected between Toyo value and head rice ratio, amylose content, ADV, and a negative correlation was observed between Toyo value and protein content (p<0.05).

  • PDF

Influence of Refeeding with Vitamin, Mineral and Fibre on Protein Synthesis and Messenger Ribonucleic Acid Content in the Liver and Muscle of Fasted Chicks

  • Aman Yaman, M.;Kita, K.;Pinontoan, R.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.545-549
    • /
    • 1998
  • The influence of refeeding with either vitamin, mineral, fibre of water on protein synthesis and mRNA content in the liver and breast muscle of fasted chicks was investigated. At 15 d of age, chicks were fasted for 2 d and then refed either vitamin, mineral, fibre or water. The fractional synthesis rate (FSR) of protein was measured after 30 min of refeeding by using a large dose injection of L - 2, $6[^3H]$ phenylalanine. In the liver, FSR was reduced by fasting and tended to increase but not significantly by refeeding with vitamin or mineral. FSR was not affected by refeeding with fibre or water. There was no influence of fasting and refeeding on ribosomal capacity (the RNA : protein ratio) and ribosomal efficiency (total protein synthesised per total RNA). The absolute synthesis rate (ASR) of liver protein and hepatic mRNA content were reduced by fasting and unchanged by refeeding. In the muscle, FSR, ASR and mRNA content were significantly decreased by fasting and not recovered by refeeding with either vitamin, mineral, fibre or water. It concluded that vitamin, mineral, fibre and water have little capacity to stimulate liver and muscle protein synthesis reduced by fasting.

Varietal Difference and Environmental Variation in Protein Content and/or Amino Acid Composition of Rice Seed (쌀의 단백질함량과 아미노산 조성의 품종간 차이와 환경변이)

  • Choi, Hae-Chune;Cho, Soo-Yeon;Kim, Kwang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.5
    • /
    • pp.379-386
    • /
    • 1990
  • Varietal difference of protein content in forty eight Korean recommended rice cultivars and environmental Variation in protein content of milled rice harvested at six sites of the middle and/or southern plain and four locations of mid-mountainous and/or alpine area in 1989 were investigated. Also, the composition of amino acid in milled rice was compared among three rice varieties: a high-protein japonica rice, Nongbaek, a high-protein Tongil-type rice, Yongjubyeo, and a low-protein japonica rice, Hwaseongbyeo. Korean recommended rice varieties showed 7.93% of average protein content with varietal variation from 5.5% to 10.2% for milled rice harvested in 1988, and 9.17% of mean protein content with the variation from 6.3% to 12.0% for milled rice harvested in 1989. Tongil-type rice was about 1% higher in protein content of milled rice than japonica. The low-protein japonica rice, Hwaseongbyeo exhibited lower content of essential amino acids per g of rice flour sample than the high-protein japoinica, Nongbaek and/or Tongil-type rice, Yongjubyeo, but the relative content of essential amino acids per 16.8g of nitrogen in milled rice of the former was not so different with those of the latters. Among amino acids the content of glutamic acid was highest and among essential amino acids the content of leucine was highest while methionine was lowest. The protein content of milled rice was negatively correlated with days from seeding to heading, K/Mg ratio, alkali digestion value(l-7) and amylose content, but it was positively correlated with translucency and magnesium content of milled rice. The protein content of milled rice harvested in the southern plain paddy field was about 1% higher compared with those harvested in the Middle plain. Also, the protein content of milled rice harvested in the southern mid-mountainous and alpine area was about 0.8% higher compared with those harvested in the resemble altitude area of the middle-northern part of Korea. The contribution of environmental variation to total in plain area was about 28.1% while that in mid-mountainous and alpine area was about 56.4%.

  • PDF