• Title/Summary/Keyword: Protein A

Search Result 29,963, Processing Time 0.05 seconds

Nutritive Value and Functional Properties of Protein Concentrate Fractionated from Chrysanthemum Flowers

  • Park, Nan-Young;Park, Yong-Jin;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.175-179
    • /
    • 1998
  • Some functional properties and nutritive value were determined for the protein concentrated fractionated from chrysanthemum flower in orer to renew interest in the flowers as food. Proximate components of chrysanthemum flower protein concentration (FPC) showed 61.2% protein, 2.0% fat and 35.2% carbhydrate on a dry basis. In amino acid composition of FPC, glutamic acid was the highest in the content, follwoed by aspartic acid, leucine and lysine. The ratio of essential/ total amino acids(E/T) was 0.42, showing a higher level of essential amino acids compared to the FAO reference protein. Digestibility of chrysanthemum FPC by pepsin and trypsin was lwoer than that of casein and was negatively correlative to both water and fat absorptions. Similar characteristics were determined between chrysanthemum FPC and milk casein in their emulsifying activity and emulsion stability. This results indicate that flowers or petals of chrysanthemum might be developed as a good source of protein.

  • PDF

In Vitro Selection of High Affinity DNA-Binding Protein Based on Plasmid Display Technology

  • Choi, Yoo-Seong;Joo, Hyun;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1022-1027
    • /
    • 2005
  • Based on plasmid display technology by the complexes of fusion protein and the encoding plasmid DNA, an in vitro selection method for high affinity DNA-binding protein was developed and experimentally demonstrated. The GAL4 DNA-binding domain (GAL4 DBD) was selected as a model DNA-binding protein, and enhanced green fluorescent protein (EGFP) was used as an expression reporter for the selection of target proteins. Error prone PCR was conducted to construct a mutant library of the model. Based on the affinity decrease with increased salt concentration, mutants of GAL4 DBD having high affinity were selected from the mutant protein library of protein-encoding plasmid complex by this method. Two mutants of (Lys33Glu, Arg123Lys, Ile127Lys) and (Ser47Pro, Ser85Pro) having high affinity were obtained from the first generation mutants. This method can be used for rapid in vitro selection of high affinity DNA-binding proteins, and has high potential for the screening of high affinity DNA-binding proteins in a sequence-specific manner.

The Study of Protein Structure Visualization and Rendering Speed Using the Geometry Instancing (기하 인스턴싱 기법을 이용한 단백질 구조 가시화 및 속도 향상에 관한 연구)

  • Park, Chan-Yong;Hwang, Chi-Jung
    • The KIPS Transactions:PartA
    • /
    • v.16A no.3
    • /
    • pp.153-158
    • /
    • 2009
  • Analysis of 3-dimensional (3D) protein structure plays an important role of structural bioinformatics. The protein structure visualization is the one of the structural bioinformatics and the most fundamental problem. As the number of known protein structure increases rapidly and the study of protein-protein interaction is prevalent, the fast visualization of large scale protein structure becomes essential. The fast protein structure visualization system we proposed is sophisticated and well designed visualization system using geometry instancing technique. Because this system is optimized for recent 3D graphics hardware using geometry instancing technique, its rendering speed is faster than other visualization tools.

Protein Methylase Inhibitor from Porcine Liver : Purification and Properties (돼지 간장 조직에서 얻은 단백질 메칠라제 저해제의 정제와 특성)

  • 박선미;박연호;백운기;이향우
    • YAKHAK HOEJI
    • /
    • v.37 no.2
    • /
    • pp.149-157
    • /
    • 1993
  • Protein methylase inhibitor which is a modulator of biological methylation has been purified and characterized from porcine liver soluble fraction by cell fractionation, Sephadex G25 chromatography, reverse phase HPLC, size exclusion HPLC. The results are summarized as follows. 1) The purified inhibitor shows apparent homogeneity, as judged by HPLC. 2) A molecular weight of the purified inhibitor which is composed of 18 amino acid residues is about 1,400 daltons. 3) A single absorption peak of ultraviolet spectrum was observed at 260nm. 4) The inhibitor was not inactivated by heating at $100^{\circ}C$ until 60min. and its activity was not influenced by treatment with digestive enzymes, such as trypsin, pepsin, pronase, chymotrypin, lysozyme, DNase, and RNase. 5) The purified inhibitor inhibited protein rnethylase I, II, III and phospholipid methyltransferase activities. 6) The purified inhibitor inhibited noncompetitively protein methylase II from porcine liver, spleen, and testis. 7) The $K_{i}$ values for protein methylase II from porcine liver, spleen, and testis were 300nM, 250nM, 297nM, respectively.

  • PDF

Changes in ruminal fermentation and blood metabolism in steers fed low protein TMR with protein fraction-enriched feeds

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • Four ruminally cannulated Holstein steers (BW $482.9{\pm}8.10kg$), fed low protein TMR (CP 11.7%) as a basal diet, were used to investigate changes in rumen fermentation and blood metabolism according to protein fraction, cornell net carbohydrates and protein system (CNCPS), and enriched feeds. The steers, arranged in a $4{\times}4$ Latin square design, consumed TMR only (control), TMR supplemented with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C), respectively. The protein feeds were substituted for 23.0% of CP in TMR. Ruminal pH, ammonia-N, and volatile fatty acids (VFA) in rumen digesta, sampled through ruminal cannula at 1 h-interval after the morning feeding, were analyzed. For plasma metabolites analysis, blood was sampled via the jugular vein after the rumen digesta sampling. Different N fraction-enriched protein feeds did not affect (p > 0.05) mean ruminal pH except AB1 being numerically lower 1 - 3 h post-feeding than the other groups. Mean ammonia-N was statistically (p < 0.05) higher for AB1 than for the other groups, but VFA did not differ among the groups. Blood urea nitrogen was statistically (p < 0.05) higher for B2 than for the other groups, which was rather unclear due to relatively low ruminal ammonia-N. This indicates that additional studies on relationships between dietary N fractions and ruminant metabolism according to different levels of CP in a basal diet should be required.

DNA Sequencing and Expression of the Circumsporozoite Protein of Plasmodium vivax Korean Isolate in Escherichia coli

  • Lee, Hyeong-Woo;Lee, Jong-Soo;Lee, Won-Ja;Lee, Ho-Sa
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.234-242
    • /
    • 1999
  • To obtain the recombinant circumsporozoite (CS) protein for the diagnosis of patients and seroepidemiology of Plasmodium vivax malaria which have been prevalent in northern part of Kyonggido, the CS protein gene was amplified by the polymerase chain reaction (PCR) from genomic DNA of the Korean vivax malaria patient. The gene consists of 1,123 nucleotides except signal peptide sequences and had an uninterrupted reading frame encoding a protein of 374 amino acids with a central region of 20 tandem repeats of the nonapeptide. The CS protein gene was expressed in Escherichia coli and purified, the molecular weight of recombinant CS protein was about 44 kDa (monomer) under denaturing purification and about 65 kDa (dimer) under native purification by SDS-PAGE. The purified recombinant CS protein which has antigenicity to malaria patients in Western blot analysis and Enzyme-linked immunosorbent assay, reacted only with the serum of P. vivax (PV210) infected malaria patients with no cross reaction to the P. falciparum malaria patient. The recombinant CS protein purified in this study will serve as a useful antigen to support the diagnosis of malaria patients and seroepidemiology.

  • PDF

Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response

  • Park, Jaehong;Lee, Jihye;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.546-556
    • /
    • 2019
  • Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.

Regulatory Action of Protein Tyrosine Kinase in Intracellular Calcium Mobilization in C5a-stimulated Neutrophils (C5a에 의해 자극된 호중구에서 세포내 칼슘동원에 대한 Protein Tyrosine Kinase의 조절작용)

  • Choi, Won-Tae;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.417-424
    • /
    • 1996
  • The present study was done to examine the involvement of protein kinase C and protein tyrosine kinase in intracellular $Ca^{2+}$ mobilization in C5a-stimulated neutrophils. Although protein kinase C inhibitors, staurosporine and H-7 inhibited intracellular $Ca^{2+}$ release in C5a-stimulated neutrophils, they did not affect $Ca^{2+}$ influx across the plasma membrane and elevation of $[Ca^{2+}]_i$ C5a-induced intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx were inhibited by protein tyrosine kinase inhibitors, genistein and methyl-2,5-dihydroxycinnamate. ADP-evoked elevation of $[Ca^{2+}]_i$ was inhibited by genistein and methyl-2,5-dihydroxycinnamate but was not affectd by staurosporine and H-7. Genistein and methyl-2,5-dihydroxycinnamate reduced the store-regulated $Ca^{2+}$ influx in thapsigargin-treated neutrophils, while the effect of staurosporine and H-7 was not detected. When neutrophils were preincubated wih phorbol 12-myristate 13-acetate, the stimulatory effect of C5a on the elevation of $[Ca^{2+}]_i$ was reduced. These results suggest that protein tyrosine kinase may be involved in control of intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx across the plasma membrane in C5a-activated neutrophils.

  • PDF

Inhibition of Corticosterone-induced Muscle Protein Synthesis by the Anabolic Steroid Nandrolone Phenylpropionate in Female Rats (아나보릭스테로이드인 Nandrolone Phenylpropionate가 암컷 쥐에서 코티코스테론에 의해 야기된 근육단백질 쇠퇴와 근육단백질 합성율 감소에 미치는 영향)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.867-873
    • /
    • 1996
  • This study was undertaken to determine whether the anabolic steroid nandrolone phenylpropionate(NPP) can inhibit the muscle atrophy and reduction in muscle protein synthesis caused by glucocorticoids in female rates. Daily injections of 50mg/kg of corticosterone for eight days induced significant reductions in body weight gain and protein without affecting food intake. The mass, protein and RNA content, ratio of RNA to protein, and fractional rate of protein synthesis, measured in vivo, of gastrocnemius muscle were all significantly reduced by corticosterone treatement. Simultaneous administration of NPP at a dose of 10mg/kg with corticosteorne (50mg/kg) fully inhibited the reductions in the mass, protein and RNA content of gastrocnemius muscle, and body weight gain and protein with no alteration in food intake but the reduction in fractional rate of muscle protein syntheis was only partially prevented. The results indicate that the anabolic steroid nandrolone phenylpropionate is capable of preventing muscle atrophy in female rats treated with excess corticosterion.

  • PDF

RENAL REGULATION OF UREA EXCRETION IN SWAMP BUFFALO FED WITH HIGH PROTEIN SUPPLEMENTATION

  • Chaiyabutr, N.;Chanpongsang, S.;Loypetjra, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.275-280
    • /
    • 1995
  • The effect of supplemented high protein diet intake on renal urea regulation in swamp buffalo was carried out in the present experiment Five swamp buffalo heifers weighing between 208-284 kg were used for this study. The animals were fed with a supplementary high protein diet and renal function and kinetic parameters for urea excretion were measured. This was compared to a control period where the same animals had been fed only with paragrass and water hyacinth. For 2 months the same animals were fed a mixed of paragrass, water hyacinth plus 2 kgs of a high protein supplement (protein 18.2% DM basis) per head per day. In comparison to the control period, there were no differences in the rate of urine flow, glomerular filtration rate (GFR), effective renal plasma flow (ERPF), plasma urea concentration and filtered urea. In animals supplemented with high protein intake mean values of urea clearance, excretion rate and the urea urine/plasma concentration ratio markedly increased (p < 0.05) while renal urea reabsorption significantly decreased from 40% to 26% of the quantity filtered. In this same study group urea space distribution and urea pool size increased which coincided with an increase in plasma volume (p < 0.05). Plasma protein decreased while plasma osmolarity increased (p < 0.05). Both urea turnover rate and biological half-life of $^{14}C$-urea were not affected by a supplementary high protein intake. The results suggest that animals supplemented with high protein diets are in a state of dynamic equilibrium of urea which is well balanced between urea excreted into the urine and the amount synthesized. The limitation for renal tubular urea reabsorption would be a change in extra-renal factors with an elevation of the total pool size of nitrogenous substance.