• Title/Summary/Keyword: Protein A

Search Result 29,963, Processing Time 0.049 seconds

Protein Kinase C (PKC) in Cellular Signalling System: Translocation of Six Protein Kinase C Isozymes in Human Prostate Adenocarcinoma PC-3 Cell Line (세포신호계에 있어서 Protein Kinase C: 사람의 전입선 adenocarcinoma PC-3 세포내의 여섯개의 Protein kinase C 동립효소의 translocation)

  • Park, Won-Chul;Ahn, Chang-Ho
    • The Korean Journal of Zoology
    • /
    • v.36 no.4
    • /
    • pp.439-451
    • /
    • 1993
  • Protein kinase C isozymes in a human prostate adenocarcinoma PC-3 cell line were characterized. Immunoreactive bands and immunocytochemical stains were obsenred in PC-3 cells with antibodies raised against protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$, and ζ types, respectively. Protein kinase C ${\alpha}$ corresponded to a immunoreactive band at a molecular weight of 80,000-dalton, whereas molecular weights of other immunoreactive isozvmes of protein kinase C were detected at 68,000-dalton. Protein kinHse C $\delta$ and ζ antibodies detected additional bands at 55,000-dalton and 80,000-dalton, respectively Immunocvtochemical study confirmed the results of the immunoblotting experiments qualitatively: all six protein kinase C isozymes were detected in the cytoplasm of PC-3 cells. Translocation of protein kinase C in PC-3 cells were also examined with phorbol 12-myristate 13-acetate (PMA), bryostatin 2, diolein, and 1-oleoyl-2-acetyl glycerol (OAG). Differential reactions of protein kinase C isozvmes to these activators were obsenred. When PC-3 cells were treated with 10mM bryostatin 2, protein kinase C isozyme u was translocated into the nucleus, whereas s type was translocated into the plasma membrane and the nucleus. Protein kinase C ${\alpha}$ and ζ types were translocated into the nucleus following the treatment with 101M diolein, whereas protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, and $\varepsilon$ types were translocated into the nucleus by the treatment with 10mM OAG. Protein kinase C ${\alpha}$ and $\varepsilon$ types were translocated into the nucleus in the presence of 100nM PMA. Protein kinase C $\delta$ type was translocated to the nuclear membrane by these activators, however, only PMA-induced translocation was inhibited by protein kinase C inhibitor, 1-(5-isoquinolinesulfonyll-2-methvlpiperazine dihvdrochloride (H7) . H7 inhibited translocation of protein kinase C ${\alpha}$ type induced by PMA, ${\beta}$ type by OAG and s type by PMA and OAG, whereas it did not affect translocations induced by bryostatin and diolein, respectively. These results suggest that there exist six isoformes of protein kinase C (${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$ and ζ types) in PC-3 cells and that each of these isozvmes distinctivelv reacts to bryostatin, diolein, OAG and PMA, in part due to an altered molecular size and conceivably discrete binding site(s).

  • PDF

THE UTILIZATION OF DIETARY PROTEIN BY YOUNG RAINBOW TROUT (무지개송어의 사료단백질 이용에 관한 연구)

  • KIM Yong Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.4
    • /
    • pp.209-214
    • /
    • 1974
  • The utilization dietary protein in young rainbow trout was investigated when feeded with the diets of controlled levels of casein and lipids for 12 days. The composition of the diet is shown in Table 1. Body weight gain was in proportion to the protein content in diet up to $40\%$, ana the maximum was obtained with $40.4\%$ of crude protein (Fig. 1, Table 2). On the other hand, the accumulated protein in body also showed almost maximum value around 40n of protein level in the diet and: the change of accumulated protein showed a little with more-protein level(Fig. 3, Table 9). The protein accumulation rate (protein accumulated/protein consumed) showed its highest value at about $40\%$ of protein level, while the protein utilization value (protein accumulation rate x protein content of diet) attained its highest value at $54.8\%$ of protein level (Table 3). With the above results it is observed that the requirement of dietary protein for young rainbow trout is about $40\%$ of protein in the diet when casein is used as the sole protein source. In protein efficiency ratio (PER) the lower protein level in the diet, the higher PER yields and the more the quantity of protein increases, the more PER decreases and its relation could be figured out as an equation of y=4.91-0.034x (Fig.4), Nose measured PER utilizing the diet which result of this, it is reported that PER rate of casein dropped within the extent of $25\%$ protein in diet. The reason why such a different PER rate appeared at the low protein level is revealed as the carbohydrate is low but the lipid high in capacity of utililzing nutrients for rainbow trout. The relation between the protein content of diet and the conversion factor, feed efficiency were determined and the results are shown in Fig. 2.

  • PDF

Effects of Dietary Protein and Lipid Levels on the Growth Performance, Feed Utilization and Innate Immunity of Juvenile Red Seabream Pagrus major (사료 내 단백질과 지방 수준이 참돔(Pagrus major) 치어의 성장, 사료효율 및 비특이적 면역력에 미치는 영향)

  • Kim, Sung-Sam;Oh, Dae-Han;Choi, Se-Min;Kim, Kang-Woong;Kim, Kyoung-Duck;Lee, Bong-Joo;Han, Hyon-Sob;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.308-313
    • /
    • 2015
  • A $3{\times}3$ factorial study was conducted to investigate the effects of dietary protein and lipid levels on the growth, feed utilization and innate immunity of red seabream Pagrus major. Nine diets consisting of three protein levels (42%, 46% and 50% crude protein) and three lipid levels (10%, 14% and 18% crude lipid) were formulated. Triplicate groups of red seabream were fed the experimental diets to apparent satiation (5-6 times a day, from 08:00 to 18:00 h at 2-h intervals) for 10 weeks. At the end of the feeding trial, the weight gain and specific growth rate of fish fed P46L14 (46% protein and 14% lipid), P50L10 (50% protein and 10% lipid) and P50L14 (50% protein and 14% lipid) were significantly (P<0.05) higher than those of fish fed P42L18 (42% protein and 18% lipid). The feed conversion ratios (FCR) of the fish were affected by dietary lipid levels (P<0.039), but not dietary protein levels. The FCR tended to increase with increasing dietary lipid levels from 10% to 18% with the 46% and 50% protein levels. The weight gain, protein efficiency ratio, specific growth rate, feed intake and survival of fish were not affected by either dietary protein or lipid levels. Myeloperoxidase activity in the group fed P50L14 (50% protein and 14% lipid) was significantly higher than that in the group fed P42L10 (42% protein and 10% lipid) or P50L18 (50% protein and 18% lipid). However, the myeloperoxidase activity of fish was not affected by either dietary protein or lipid level. The fish fed P46L14 (46% protein and 14% lipid) and P46L18 (46% protein and 18% lipid) showed significantly higher superoxide dismutase activity than did the fish fed P46L10 (46% protein and 10% lipid), P50L10 (50% protein and 10% lipid) of P50L18 (50% protein and 18% lipid). In conclusion, the optimum protein and lipid levels for the growth and feed utilization of juvenile red seabream were 46% and 14%, respectively, and the optimum dietary protein to energy ratio was 27.4 g/MJ.

Review on Exercise Training and Protein Intake in Skeletal Muscle Protein Metabolism (운동훈련과 단백질 섭취에 따른 골격근 단백질 대사: 안정성 동위원소 추적체법을 이용한 연구결과를 중심으로)

  • Shin, Yun-A;Kim, Il-Young
    • Exercise Science
    • /
    • v.26 no.2
    • /
    • pp.103-114
    • /
    • 2017
  • INTRODUCTION: Regulation of skeletal muscle protein mass is implicated not only in exercise performance but in metabolic health. Exercise in combination with nutrition, particularly dietary protein/amino acid intake, are the pragmatic approach that effectively induces muscle anabolic response (i.e., muscle hypertrophy) through regulating protein synthesis and breakdown. PURPOSE: The purpose of this review was to summarize available data on the effect of exercise intervention and amino acids intake on muscle protein synthesis and breakdown and provide an insight into development of an effective exercise intervention and amino acids supplements, applicable to training practice. METHODS: In this review, we have reviewed currently available data mainly from stable isotope tracer studies with respect to the effect of exercise intervention and protein or amino acid supplement on muscle protein anabolic response. CONCLUSIONS: Taken together, exercise alone may not be effective in achieving a positive net muscle protein balance due to the fact that protein breakdown still exceeds protein synthesis until nutrition intake such as protein/amino acids. It appears that muscle anabolic response increases in proportional to the amount of protein intake up to 20 - 35 g depending on quality of protein, age, differences on exercise intensity, duration, and frequency, and individual's training status

Effect of pH on Successive Foam and Sonic Droplet Fractionation of a Bromelain-invertase Mixture

  • Ko Samuel;Prokop Ales;Tanner Robert D.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • A droplet fractionation method was previously developed to concentrate a dilute nonfoaming protein solution. In that earlier study with invertase, it was demonstrated that droplets created by ultrasonic energy waves could be enriched up to 8 times that of the initial dilute invertase solution. In this study, a mixture of bromelain (a foaming protein) and invertase (a nonfoaming protein) is investigated as a preliminary step to determine if droplet fractionation can also be used to separate a non-foaming protein from foaming proteins. The foaming mixture containing bromelain is first removed by bubbling the binary mixture with air. After the foam is removed, the protein rich air-water interfacial layer is skimmed off (prior to droplet fractionation) so as not to interfere with the subsequent droplet production from the remaining bulk liquid, rich in non-foaming protein. Finally, sonic energy waves are then applied to this residual bulk liquid to recover droplets containing the non-foaming protein, presumed to be invertase. The primary control variable used in this droplet fractionation process is the pH, which ranged for separate experiments between 2 and 9. It was observed that the maximum overall protein partition coefficients of 5 and 4 were achieved at pH 2 and 4, respectively, for the initial foaming experiment followed by the post foaming droplet fractionation experiment.

A Nucleolar Protein, MoRRP8 Is Required for Development and Pathogenicity in the Rice Blast Fungus

  • Minji Kim;Song Hee Lee;Junhyun Jeon
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.273-280
    • /
    • 2023
  • The nucleolus is the largest, membrane-less organelle within the nucleus of eukaryotic cell that plays a critical role in rRNA transcription and assembly of ribosomes. Recently, the nucleolus has been shown to be implicated in an array of processes including the formation of signal recognition particles and response to cellular stress. Such diverse functions of nucleolus are mediated by nucleolar proteins. In this study, we characterized a gene coding a putative protein containing a nucleolar localization sequence (NoLS) in the rice blast fungus, Magnaporthe oryzae. Phylogenetic and domain analysis suggested that the protein is orthologous to Rrp8 in Saccharomyces cerevisiae. MoRRP8-GFP (translational fusion of MoRRP8 with green fluorescence protein) co-localizes with a nucleolar marker protein, MoNOP1 fused to red fluorescence protein (RFP), indicating that MoRRP8 is a nucleolar protein. Deletion of the MoRRP8 gene caused a reduction in vegetative growth and impinged largely on asexual sporulation. Although the asexual spores of DMorrp8 were morphologically indistinguishable from those of wild-type, they showed delay in germination and reduction in appressorium formation. Our pathogenicity assay revealed that the MoRRP8 is required for full virulence and growth within host plants. Taken together, these results suggest that nucleolar processes mediated by MoRRP8 is pivotal for fungal development and pathogenesis.

The Effect of 4 Weeks of Treadmill Exercise and Protein Diet on Immunoglobulin and Antioxidant Enzyme in Rats (4주간의 트레드밀 운동과 단백질 식이가 흰쥐의 면역글로불린 및 항산화효소에 미치는 영향)

  • Lee, Chan-Soo;Lee, Sang-Ho;Sung, Gi-Dong;Baek, Yeong-Ho
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1483-1489
    • /
    • 2010
  • The purpose of this study was to investigate the effects of treadmill exercise and a protein diet on immunoglobulin and antioxidant enzymes in rats. Forty-four male Sprague-Dawley rats, 5 weeks old, were used. Experimental groups were divided into exercise with protein diet group (A, n=11), exercise group (B, n=11), protein diet group (C, n=11), and the control group (D, n=11). Exercise was administered through a treadmill running program (14~18 m/min, $0^{\circ}$ grade, 20 min/day, 5 day/wk) and these rats were given a 40% protein diet for 4 wk. The results of this study are as follows: the protein diet group showed a significant increase in IgG of immunoglobulin compared to the exercise group and control group; the exercise with protein diet group and protein diet group showed a significant increase in SOD activity of antioxidant enzymes compared to the control group; the exercise with protein diet group, exercise group and protein diet group showed a significant increase in GPx activity of antioxidant enzymes compared to the control group; the exercise with protein diet group showed a significant increase in CAT activity of antioxidant enzymes compared to the protein diet group and control group. In conclusion, treadmill exercise and a protein diet were found to help with immunoglobulin and antioxidant enzymes. Further research regarding the effects of exercise and protein diets is required.

EFFECTS OF DIETARY CELLULOSE AND PROTEIN LEVELS ON NUTRIENT UTILIZATION IN CHICKENS

  • Siri, S.;Tobioka, H.;Tasaki, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.2
    • /
    • pp.207-212
    • /
    • 1994
  • Effects of dietary cellulose and protein levels on nutrient utilization in chickens were investigated. Four experimental diets containing 5% (low cellulose) or 20% (high cellulose) cellulose in combination with 10% (low protein) or 20% (high protein) protein of 70 g/day were alternatively forced-fed to eight colostomized White Leghorn cockerels once a day to make $4{\times}4$ Latin-square design. The digestibilities of DM and energy decreased with the increase in cellulose level, but not affected by dietary protein level. Ether extract digestibility was higher in the high cellulose diets than in the low cellulose protein level. Ether extract digestibility was higher in the high cellulose diets than in the low cellulose diets. The digestibility of nitrogen free extract had the same trend with the digestibility of DM and energy. The digestibility of acid detergent fiber was not so much different among the diets, but the NDF digestibility was lower in the high cellulose diets than in the low cellulose diets, due to the low hemicellulose digestibility. The true digestibility of protein was influenced by both of the dietary protein and cellulose levels, and their interaction was found. The dietary protein level affected the biological value of protein but the dietary cellulose level did not, and consequently the biological value of protein in the low protein diets was lower than in the high protein diets.

Effects of The Soy Protein Level on Plasma Glucose, Lipids, and Hormones in Streptozotocin-Diabetic Rats

  • Choi, Mi Ja
    • Journal of Nutrition and Health
    • /
    • v.27 no.9
    • /
    • pp.883-891
    • /
    • 1994
  • The number of diabetics in Korea is about 3 to 5 percent of the population, and the incidence is increasing yearly due to changes of life style and food intake. Diet is a key element in the management of diabetes, yet the appropriate diet for diabetes remains controversial. We have recently shown that a diet rich in protein of animal origin(casein) seems beneficial to controling plasma glucose and lipids in streptozotocin-induced diabetic rats. It therefore seemed desirable to find out whether the beneficial effect of high casein diet in experimental diabetes could also be reproduced with a vegetable source of protein(soy). The purpose of this study is to compare these results with the results of our previous study. In the present study, non-diabetic and streptozotocin-induced diabetic rats were studied in order to examine the effects of altering the level(20% vs 60%) of dietary soy protein on blood glucose, lipids, and hormones. Results of the present study showed that a high soy protein diet decreased triglyceride concentration in diabetic rats. However, diabetic rats fed a high soy protein diet were not hypocholesterolemic compared to rats fed a control diet. Moreover, diabetic rats fed a high soy protein diet had significantly increased plasma glucose concentration compared to rats fed a control diet. This study was not able to discern a specific effect of dietary protein level on insulin, glucagon, or insulin/glucagon ratio. Except for the hypotriglyceridemic effect, the results were not similar to the findings of our previous study which showed a beneficial effect on streptozotocin-induced diabetic rats fed a high casein diet.

  • PDF

Modular neural network in prediction of protein function (단위 신경망을 이용한 단백질 기능 예측)

  • Hwang Doo-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.1-6
    • /
    • 2006
  • The prediction of protein function basically make use of a protein-protein interaction map based on the concept of guilt-by-association. The method however cannot determine the functions of proteins in case that the target protein does not interact with proteins with known functions directly. This paper studies protein function prediction considering the given problem as a K-class classification problem and proposes a predictive approach utilizing a modular neural network. The proposed method uses interaction data and protein related attributes as well. The experimental results demonstrate that the proposed approach can predict the functional roles of Yeast proteins whose interaction knowledge is not known and shows better performance than the graph-based models that use protein interaction data.