• Title/Summary/Keyword: Protective relay

Search Result 237, Processing Time 0.023 seconds

Protective Relaying Algorithm for Transformer Using Neuro-Fuzzy (뉴로-퍼지를 이용한 변압기 보호계전 알고리즘)

  • 이명윤;이종범;서재호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.722-730
    • /
    • 2003
  • Current differential relay is commonly used to protect power transformer. However, current differential relay will be tripod by judging like internal fault during inrush occurring in transformer. To resolve such problem, this paper proposes a new protective relaying algorithm using Neuro-Fuzzy Inference. A variety of transformer transition states are simulated by BCTRAN and HYSDT of EMTP. Primary phase voltage and differential current are obtained from simulation. The target data which are used in Neuro-Fuzzy algorithm are obtained from transformed primary voltage and current. Then, these are trained by Neuro-Fuzzy algorithm. The trained Neuro-Fuzzy algorithm correctly distinguishes whether internal fault occurs or not, within 1/2 cycle after fault. Accordingly, it is evaluated that the proposed algorithm has good relaying characteristics.

Protective Relaying Algorithm for Transformer Using Wavelet Transform (웨이블렛 변환을 이용한 변압기 보호계전 알고리즘)

  • 홍동석;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.134-141
    • /
    • 2003
  • The power transformer is one of the very important electric facilities in power systems. Recently, current differential relay is widely used to protect such power transformer But if inrush occurs in transformer, relay can be tripped by judging like internal fault. Therefore the correct discrimination between internal winding fault, inrush and overexcitation should be performed. This paper presents a new protective relaying algorithm which discriminates inrush, internal faults and overexcitation of transformer modelled using BCTRAN and HYSDAT of EMTP. Discrimination between internal winding fault and inrush is revealed in simulation within 1/2 cycle after fault. Accordingly, it is evaluated that the proposed algorithm has better discrimination characteristics in various cases thin the current relaying for protection of transformer.

A Study on the Digital System for Supervisory Control of the Circuit Breakers (차단기 감시제어용 디지털 시스템에 관한 연구)

  • 이성환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • In this paper, we developed the window based monitoring system. This system offers the analysis of accidents in the power plants, the operating status of relays and the historical data with which the experts can offer the idea about the operation of the power system. And we can also monitor the status of the ACB and relay at a long distance by means of the function of communication in the digital protective relay itself. By means of the above functions, we developed the system, which is run after the diagnosis and maintenance of the electrical machines and an amount of data are realized by graphical method fitting the operating convenience of the users.

A New Protective Relaying Algorithm for Power Transformer Based on Three Phase Voltage and Current (전압, 전류 변화 추이를 이용한 전력용 변압기 보호계전 알고리즘)

  • Kim, Sang-Tae;Lee, Seung-Jae;Kang, Sang-Hee;Jin, Bo-Gun;Yoon, Sang-Hyun;Lee, Tae-Sung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.4
    • /
    • pp.157-165
    • /
    • 2001
  • The two criteria to identify the disturbances of the power transformer has been reported in this paper. They have been derived through EMTP simulations of internal faults, inrush and overexcitation for the model of 154/22.9[kV], 40[MVA], Y-Y three-phase power transformer. We propose the crisp algorithm which uses two criteria. A series of test results clearly indicate that the method can identify not only an internal fault but also the other transients. The average of relay operation times is about 7.2[ms]. The proposed algorithm immunes to the transient state.

  • PDF

Development of an Impedance Locus Model for a Protective Relay Dynamic Test with a Digital Simulator

  • Kim, Soo-Nam;Lee, Myoung-Soo;Lee, Jae-Gyu;Rhee, Sang-Bong;Kim, Kyu-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • This paper presents a method for the development of the impedance locus to test the dynamic characteristics of protective relays. Specifically, using the proposed method, the impedance locus can comprise three impedance points, and the speed of impedance trajectory can be adjusted by frequency deviation. This paper is divided into two main sections. The first section deals with the configuration of impedance locus with voltage magnitude, total impedance magnitude, and impedance angle. The second section discusses the control of the locus speed with the means of the deviation between two frequencies. The proposed method is applied to two machine equivalent systems with offline simulation (i.e., PSCAD) and real-time simulation (i.e., real-time simulation environment) to demonstrate its effectiveness.

Adaptive Protection Algorithm for Overcurrent Relay in Distribution System with DG

  • Sung, Byung Chul;Lee, Soo Hyoung;Park, Jung-Wook;Meliopoulos, A.P.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1002-1011
    • /
    • 2013
  • This paper proposes the new adaptive protection algorithm for inverse-time overcurrent relays (OCRs) to ensure their proper operating time and protective coordination. The application of the proposed algorithm requires digital protection relays with microcontroller and memory. The operating parameters of digital OCRs are adjusted based on the available data whenever system conditions (system with distributed generation (DG)) vary. Moreover, it can reduce the calculation time required to determine the operating parameters for achieving its purpose. To verify its effectiveness, several case studies are performed in time-domain simulation. The results show that the proposed adaptive protection algorithm can keep the proper operating time and provide the protective coordination time interval with fast response.

Development of a Simulator and Algorithm Test for Selective-breaking Integrated Protective Relay for Ungrounded DC Traction Power Supply System (DC 비접지 급전계통 선택차단형 통합보호계전기 시뮬레이터 개발 및 알고리즘 테스트)

  • An, Tae-Pung;Yun, Jun-Seok;Jung, Tae-Young;Kim, In-Woong;Jung, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.899-904
    • /
    • 2012
  • In recent years, a lot of research was done for earth fault protection in ungrounded dc power supply system. As a result, selective-breaking integrated protective relaying system is developed in progress and is currently field-testing are planned. Algorithm on a PC using PSCAD done a lot of testing before performing field tests, but in this study developed algorithms and functions needed to determine whether they were operating normally. Therefore, simulated system is similar to the actual situation was required and made. selective-breaking algorithm verification and validation was performed with simulator.

Development of SFCL Model using RTDS (RTDS 초전도한류기 해석모델 개발)

  • Lee, Seung-Ryul;Kwon, Jung-Ji;Yoon, Jae-Young;Lee, Byong-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.9-13
    • /
    • 2008
  • It is very important to study the protective relaying system from the viewpoint of technical analysis to apply superconducting power devices to real power systems. In this paper, we developed Superconducting Fault Current Limiter (SFCL) analysis model using Real Time Digital Simulator(RTDS) for protective relay tests in power system with SFCLs. The RTDS model has the operation mechanism of a real SFCL system.

Simulation of the Distance Relay Using EMTP MODELS

  • J.Y. Heo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.26-32
    • /
    • 2004
  • Digital technology has advanced significantly over the years both in terms of software tools and hardware availability. It is now applied extensively throughout many area of electrical engineering including protective relaying in power systems. Digital relays have numerous advantages over traditional analog relays, such as the ability to accomplish what is difficult or impossible using analog relays. Although non real-time simulators like PSCAD/EMTDC are employed to test the algorithms, such simulations are disadvantaged in that they cannot test the relay dynamically. Hence, real-time simulators like RTDS are used. However, the latter requires large space and is very expensive. This paper uses EMTP MODELS to simulate the power system and the distance relay. The distance relay algorithm is implemented and the distance relay is interfaced with a test power system. The distance relay's performance is then assessed interactively under various fault types, fault distances and fault inception angles. The test results show that we can simulate the distance relay effectively and we can examine the operation of the distance relay very closely including its drawbacks/limitations by using EMTP MODELS. Equally important, this approach facilitates any changes that need to be carried out in order to enhance the Distance Relay under test/examination.

A Preliminary Design of Fuzzy Protective Relay (Fuzzy 보호계전기의 기본 설계)

  • Lee, Seung-Jae;Kang, Sang-Hee;Kim, Ki-Hwa;Kim, Il-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.668-670
    • /
    • 1996
  • The conventional relay which determines the fault state based on the current and voltage has a certain limitations due to the uncertainties involved in the data and the decision making criteria. This study proposes the fuzzy relay applying the Belief-Measure to make a decision on the fault based on the various criteria and integrated data.

  • PDF