• Title/Summary/Keyword: Protective Structure

Search Result 324, Processing Time 0.025 seconds

Abrief study on the corrosion of bronze roofing tile (납(Pb)도금(동개와)의 부식 연구)

  • Kim, Sa-Dug
    • 보존과학연구
    • /
    • s.15
    • /
    • pp.52-58
    • /
    • 1994
  • To protect corrosion of bronze roofing tile for Choson Royal Historic Museum, lead coating on tile was performed by electroplating method with thickness of $35\mum$. Lead coated tile samples were inverstigated what corrosion products were formed with color changes on them by testing Accelerated Weathering. No sulfides were formed on samples contacting with 300ppm sulfur dioxide and any color changes were not found. In Accelerated Weathering test, White hydrocerussite, basic lead carbonate($2PbCO_3Pb(OH)_2$) having protective structure made of compact adhering crystals.

  • PDF

OBSERVATION OF THE MAGNETIC DOMAIN IN THIN-FILM HEADS BY ELECTRON MICROSCOPY

  • Kobayashi, Kazuo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.710-715
    • /
    • 1995
  • Magnetic domains were observed using an image lock-in technique for backscattered electron contrast (Type II) with a 200 kV scanning electron microscope. Backscattered electrons indicate a difference in magnetic domain structures at the upper and lower parts of the upper pole in thin-film heads, changing the acceleration voltage. With this method, it is also possible to observe the domain structure of the thin-film head pole through a 10 to $20\;\mu\textrm{m}$ protective layer, and the upper shield of the MR head through the coil in the resist, alumina overcoat, and upper pole.

  • PDF

The Design and Protective Capacity Assessment of the Prefabricated PC Arch Ammo Magazines (아치형 조립식 PC 탄약고 설계 및 방호성능 평가)

  • Park, Jang-Kweon;Lim, Chul-Won;Ryu, Dong-Woo;Son, Ki-Young;Baek, Jong-Hyuk;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.615-621
    • /
    • 2014
  • This study suggests the design and assembly drawing of the prefabricated precast concrete arch ammo magazines using the numerical analysis as well as the explosion verification test. The protective capacity of the proposed magazines is identified with the maximum support rotation angles measured by explosion verification tests according to the U.S. Unified Facility Criteria 3-340-02. Using numerical analysis, it is examined that oval-type members are better than the semi-circle ones in terms of protective capacity. Based on this numerical results, the design and assemble drawing for the prefabricated precast concrete arch ammo magazine are developed. It is identified that the structure constructed by invented design and assembly drawing has enough protective capacity against blast pressure caused by 133.75kg TNT explosion. The detonation point cannot be open due to the military security. In sum, it could be concluded that the ammo magazine proposed in this study has reliable protective capacity with enough redundancy. The redundancy means that there are more economic design approach with reducing the curved wall thickness.

Nanostructured PVdF-HFP/TiO2 Composite as Protective Layer on Lithium Metal Battery Anode with Enhanced Electrochemical Performance (PVdF-HFP/TiO2 나노복합체 보호층을 통한 리튬금속전지 음극의 전기화학적 성능 향상)

  • Lee, Sanghyun;Choi, Sang-Seok;Kim, Dong-Eun;Hyun, Jun-Heock;Park, Young-Wook;Yu, Jin-Seong;Jeon, So-Yoon;Park, Joongwon;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.417-425
    • /
    • 2021
  • As the demand for high-capacity batteries increases, there has been growing researches on the lithium metal anode with a capacity (3,860 mAh/g) of higher than that of conventional one and a low electrochemical potential (-3.040 V). In this study, using the anatase phased TiO2 nanoparticles synthesized by hydrothermal synthesis, a PVdF-HFP/TiO2 organic/inorganic composite material was designed and used as an interfacial protective layer for a Li metal anode. As-formed organic/inorganic-lithium composite thin film was confirmed through the crystalline structure and morphological analyses. In addition, the electrochemical test (cycle stability and voltage profile) confirmed that the protective layer of PVdF-HFP/TiO2 composite (10 wt% TiO2 and 1.1 ㎛ film thickness) contributed to the enhanced electrochemical performance of the lithium metal anode (Colombic efficiency retention: 90% for 77 cycles). Based on comparative test with the untreated lithium electrode, it was confirmed that our protective layer plays an important role to stabilize/improve the EC performance of the lithium metal negative electrode.

A Study on Meaning of Open Structure in Clothing Design (복식 디자인에 표현된 의미적 열린 구조)

  • Cho, El-Lie;Kim, Young-In
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.9 s.109
    • /
    • pp.1-13
    • /
    • 2006
  • The purpose of this study is to apply a concept of open structure to clothing design and to verify the characteristics found in the various types of clothing which has open structure. The literatures from various academic fields including philosophy, literature, social science, architecture, and fine arts are investigated to define the concept of openness and to analyze it from the perspectives both of the visual and of the moaning of openness. This paper is to identify the types and the characteristics of clothing by future intention, complexity, discontinuity of open structure. By closely examining fashion design after 1980s found in fashion collection publications and designer's websites, the results of this study are as follows: first, the concept of openness can be classified into two different levels, that is, visual and meaning, secondly, in clothing the concept of open structure is applied to the meaning side by future intention, by complexity and by discontinuity. Open structure through future Intention has new content and interpretation and must have the possibility of intelligence awakening, future guidance and basic contents. Open structure through complexity has secondary function exists concurrent with the shape key example is the smart clothes with the digital functions. It has functions of amusement, supplement and protective, and is future clothes which satisfies with health, welfare, desire of beauty. Open structure with discontinuity is clothes with dramatic changes in system, structures and states. Structure can be changed by silhouette, detail, or fabric, material, or dramatic and practical function as tools in terms of productions and environment. This study can help to formulate and to integrate the concept of open structure in clothing with various phases and enhance the value of clothes by showing an application of the concept of openness to the clothing in meaning level.

Emission Characteristics of Encapsulated Organic Light Emitting Devices Using Attaching Film and Flat Glass (접착 필름과 평판 유리를 이용하여 봉지된 유기 발광 소자의 발광 특성)

  • Lim, Su Yong;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.111-115
    • /
    • 2013
  • To study the encapsulation method for large-area organic light emitting devices (OLEDs), OLED of ITO / 2-TNATA / NPB / $Alq_3$:Rubrene / $Alq_3$ / LiF / Al structure was fabricated, which on $Alq_3$/LiF/Al as protective layer of OLED was deposited to protect the damage of OLED, and subsequently it was encapsulated using attaching film and flat glass. The current density and luminance of encapsulated OLED using attaching film and flat glass has similar characteristics compared with non-encapsulated OLED when thickness of Al as a protective layer was 1200 nm, otherwise power efficiency of encapsulated OLED was better than non-encapsulated OLED. Encapsulation process using attaching film and flat glass did not have any effects on the emission spectrum and the Commission International de L'Eclairage (CIE) coordinate. The lifetime of encapsulated OLED using attaching film and flat glass was 287 hours in 1200 nm Al thickness, which was increased according to thickness of Al protective layer, and was improved 54% compared with 186 hours in same Al thickness, lifetime of encapsulated OLED using epoxy and flat glass. As a result, it showed the improved efficiency and the long lifetime, because the encapsulation method using attaching film and flat glass could minimize the impact on OLED caused through UV hardening process in case of glass encapsulation using epoxy.

Fabrication and Evaluation of Electrospun TiO2 Nanocomposite Fibers for the Development of UV-protective Textile Materials (자외선 차단 소재 개발을 위한 전기방사 TiO2 복합나노섬유의 제조 및 특성)

  • Lee, Kyung;Lee, Seung-Sin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.11
    • /
    • pp.1767-1778
    • /
    • 2010
  • This study investigates applying $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via electrospinning for the development of UV-protective materials. To fabricate uniform nanocomposite fibers, three types of $TiO_2$ nanoparticles were applied: powder, colloid, and $TiO_2$ coated polymer pellets. $TiO_2$/polyurethane (PU) and $TiO_2$/poly(vinyl alcohol) (PVA) nanocomposite fibers were electrospun and the morphology was examined using a field-emission scanning electron microscope and a transmission electron microscope. Layered fabric systems with electrospun $TiO_2$ nanocomposite fiber webs were developed at various concentrations of $TiO_2$ in a range of the web area density. The effects of $TiO_2$ concentration and web area density on UV-protective properties were examined. When $TiO_2$ colloid was added into a PVA polymer solution, uniform nanocomposite fiber webs in which $TiO_2$ particles were evenly dispersed were produced. Water-soluble PVA nanofiber webs were given a heat treatment to stabilize the electrospun PVA fibrous structure against dissolution in water. $TiO_2$/PVA nanoeomposite fiber webs with 2wt% $TiO_2$ and 3.0g/$m^2$ web area density exhibited an ultraviolet protection factor of greater than 50, indicating excellent UV protection.

Protective Effect of Lactobacillus fermentum LA12 in an Alcohol-Induced Rat Model of Alcoholic Steatohepatitis

  • Kim, Byoung-Kook;Lee, In-Ock;Tan, Pei-Lei;Eor, Ju-Young;Hwang, Jae-Kwan;Kim, Sae-Hun
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.931-939
    • /
    • 2017
  • Alcoholic liver disease (ALD) is a complex multifaceted disease that involves oxidative stress and inflammation as the key mediators. Despite decades of intensive research, there are no FDA-approved therapies, and/or no effective cure is yet available. Probiotics have received increasing attention in the past few years due to their well-documented gastrointestinal health-promoting effects. Interestingly, emerging studies have suggested that certain probiotics may offer benefits beyond the gut. Lactobacillus fermentum LA12 has been previously demonstrated to play a role in inflammatory-related disease. However, the possible protective effect of L. fermentum LA12 on ALD still remain to be explored. Thus, the aim of this study was to evaluate the possible protective effect of L. fermentum LA12 on alcohol-induced gut barrier dysfunction and liver damage in a rat model of alcoholic steatohepatitis (ASH). Daily oral administration of L. fermentum LA12 in rat model of ASH for four weeks was shown to significantly reduced intestinal nitric oxide production and hyperpermeability. Moreover, small intestinal histological- and qRT-PCR analysis further revealed that L. fermentum LA12 treatment was capable of up-regulating the mRNA expression levels of tight junction proteins, thereby stimulating the restitution of barrier structure and function. Serum and hepatic analyses also revealed that the restoration of epithelial barrier function may prevent the leakage of endotoxin into the blood, subsequently improve liver function and hepatic steatosis in the L. fermentum LA12-treated rats. Altogether, results in this study suggest that L. fermentum LA12 may be used as a dietary adjunct for the prevention and treatment of ASH.

Electromagnetic Pulse Shielding Effectiveness and Construction Availability of Cast-In-Place Structures Using Corrugated Metal-Plates

  • Kim, Suk Bong;Yoon, Sangho;Min, Gyung Chan;Ahn, Sungjin;Park, Young Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.84-89
    • /
    • 2013
  • This study aims to examine the effectiveness of electromagnetic pulse shielding in cast-in-place protective shelters using corrugated metal-plates, and then reviews their usability for the Republic of Korea Army. The Korea Corps of Engineering has evaluated corrugated metal-plates as a construction material for cast-in-place structures, which have to defend against mechanical impacts as well as electromagnetic pulses. Corrugated metal-plate is known as a superb mechanical protective material, so much so that it has been employed in ammunition magazines and artillery platforms in the armed forces. Moreover, as a metal, such as steel and copper, it is universally recognized as one of the most effective electromagnetic pulse shielding materials. In addition to effectively shielding from electromagnetic pulses and protecting against mechanical impacts, corrugated metal-plates should prove to be an appropriate construction material for the cast-in-place protective shelter in terms of construction availability and economic feasibility. The shielding effectiveness of the suggested structures is examined based on MIL-STD 188-125-1. A few frequency bands need an increase of 15~30dB in shielding effectiveness because of unbidden apertures caused by flaws associated with welding, assembling, and material deformation. However, allowing for the approximately 40dB of shielding provided by soil; the examined structure, which is buried underground, can offset its shortcomings sufficiently.