• 제목/요약/키워드: Protection devices

Search Result 788, Processing Time 0.028 seconds

Protection coordination between residual current device and surge protective devices in low-voltage consumer's installations (저압 수용가 설비에서 누전차단기와 서지방호장치 사이의 보호협조)

  • Lee, Bok-Hee;Kim, Hoe-Gu;Park, Hee-Yeoul;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.75-81
    • /
    • 2013
  • In this paper, protection coordination between residual current devices and surge protective devices in low-voltage consumer's distribution systems are presented. In the case that a surge protrctive device(SPD) is located on the load side of an residual current device(RCD), when the surge is injected from the source side of the RCD, most of injected surge currents are split into the RCD and the protection coordination between the SPD and RCD is improper, three of 6 specimens experience unintended operation due to test impulse currents. Also when the surges is injected from the load side, a lot of the surge currents is split into the SPD, but a half of test specimens causes nuisance trip. Coordination between SPD and RCD is not valid. When installing SPD, it is important to select SPD after due consideration of the protection voltage level of metal oxide varistor embedded in RCD. It is expected that the results obtained from this work could be useful to improve the protection effects of SPD in low-voltage distribution systems.

A NOTE ON PROTECTION OF PRIVACY IN RANDOMIZED RESPONSE DEVICES

  • SAHA AMITAVA
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • We consider 'efficiency versus privacy-protection' problem concerned with several well-known randomized response (RR) devices to estimate pro­portion of people bearing a stigmatizing characteristic in a community. The literature of RR on respondent's privacy protection discusses only about response specific jeopardy measures. We propose a measure of jeopardy that is independent of the RR offered by the interviewee and recommend it for using as a technical characteristic of the RR device. For ensuring better cooperation from the interviewees this new measure that depends only on the design parameters of the RR devices may be disclosed to the respondents before producing the RR by implementing the randomization device.

A basic study on protection system of superconductivity power system (대용량 초전도 신전력계통 보호방식 문제해결을 위한 기본연구)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young;Lee, Byong-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.16-20
    • /
    • 2007
  • This paper describes protection system of new distribution power system with superconducting power devices such as HTS cable, HTS transformer, HTS-FCL. First of all, this paper investigates protection systems of Korean power system and then do a basic study on relaying systems in the power system with HTS power devices. For the more detailed results, we did the study using EMTDC relaying system modeling from the viewpoint of superconducting power devices application. Then we proposed some solution for a high resistance fault problem.

Optimal Operation Algorithm of Protection Devices in Distribution Systems With PV System (대용량 태양광전원이 연계된 배전선로에 있어서 보호협조기기의 최적 운용알고리즘)

  • Kwon, Soon-hwan;Lee, Hu-dong;Nam, Yang-hyun;Rho, Dae-seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.17-26
    • /
    • 2018
  • If a photovoltaic (PV) system is installed in a primary feeder interconnected with the PV system, bi-directional power flow can occur, and then, the magnitude and direction of the fault current can change, depending on the fault location and point of common coupling (PCC) of the PV system, and the time current curve (TCC) cannot be properly coordinated between protection devices. Also, it is difficult to obtain a proper time interval for protection devices because the conventional setting approach is applied, even though the PV system is installed and operating. Therefore, this paper presents three operation modes considering the operational conditions of the PV system to obtain setting values for protection devices. Based on the mode, this paper proposes an algorithm to calculate the optimal protection coordination time interval according to the introduction capacity of the PV system. In addition, this paper performs modelling of a distribution system with the PV system and protection devices by using Off-DAS S/W, and analyzes the characteristics of the time interval between the protection devices, such as substation relays, reclosers, customer relays, and PV customer relays. The simulation results confirmed that the proposed operational modes and setting-value algorithms are useful and effective for protection coordination in a distribution system for a PV system.

A Study on Searching Algorithm for Malfunction Pattern of Protection Devices in Distribution System with PV Systems (태양광전원이 연계된 배전계통 보호협조기기의 부동작패턴 탐색알고리즘에 관한 연구)

  • Kwon, Soon-Hwan;Tae, Dong-Hyun;Lee, Hu-Dong;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.652-661
    • /
    • 2020
  • Recently, the Korean government developed the RE3020 (renewable energy) policy to overcome environmental problems, such as fine dust, climate change, and large-scale PV systems interconnected with a distribution system. When a large-scale PV system is interconnected in the distribution system, however, a malfunction can occur, and the protection devices may not be operated because of the dividing effect depending on the magnitude and direction of fault current as well as connection types and location of the PV system. Therefore, this paper proposes a search algorithm for the malfunction pattern of protection devices based on various scenarios, when large-scale PV systems are operated and interconnected in a distribution system. This paper presents a malfunction mechanism of protection devices according to the installation locations of recloser (R/C). Furthermore, the modeling of a distribution system with large-scale PV systems was performed using Off-DAS S/W, and the malfunction patterns of protection devices were analyzed based on a range of scenarios. From the simulation results with the proposed model and algorithm for searching for protection devices, it was confirmed that they are useful and effective in identifying a malfunction phenomenon depending on the installation location of the R/C and connection type of PV system.

Protection Relay Coordination Study for Reducing Arc Flash Hazard (아크플래시 장해 대책 보호계전기 협조 검토)

  • Lee, Kang-Wan;Yang, Jung-Oock
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.545-546
    • /
    • 2015
  • Arc flash hazard study is required for the electric power system of industrial plant nowadays. Arc flash incident energy and level are calculated by arc flash hazard study. The arcing fault clearing time is determined by the response time of protection devices. This paper is protection devices coordination study to reduce potential incident energy for industrial electric power system.

  • PDF

Protection Circuit Design of Electronic Ballcst for MHD Lamps (MHD 램프용 전자식 안정기의 보호 회로 설계)

  • Lee, Bong-Jin;Kim, Ki-Nam;Park, Chong-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper describes the process of designing a protection circuit against an open or short electronic ballast. An open electronic ballast creates high voltages in a regular period, which a lies voltage stress on switching devices. On the other hand, a shorted output generates excessive current, causing problems such as heat generation in the ballast and reduced lifespan of semiconductor devices. This study proposes a protection circuit consisting of TTL and passive devices to resolve the problems. The proposed protection circuit offers the benefits of low cost and high reliability. The proposed circuit was connected to an actual ballast to demonstrate its applicability.

Implementation and Measurement of Protection Circuits for Step-down DC-DC Converter Using 0.18um CMOS Process (0.18um CMOS 공정을 이용한 강압형 DC-DC 컨버터 보호회로 구현 및 측정)

  • Song, Won-Ju;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.265-271
    • /
    • 2018
  • DC-DC buck converter is a critical building block in the power management integrated circuit (PMIC) architecture for the portable devices such as cellular phone, personal digital assistance (PDA) because of its power efficiency over a wide range of conversion ratio. To ensure a safe operation, avoid unexpected damages and enhance the reliability of the converter, fully-integrated protection circuits such as over voltage protection (OVP), under voltage lock out (UVLO), startup, and thermal shutdown (TSD) blocks are designed. In this paper, these three fully-integrated protection circuit blocks are proposed for use in the DC-DC buck converter. The buck converter with proposed protection blocks is operated with a switching frequency of 1 MHz in continuous conduction mode (CCM). In order to verify the proposed scheme, the buck converter has been designed using a 180 nm CMOS technology. The UVLO circuit is designed to track the input voltage and turns on/off the buck converter when the input voltage is higher/lower than 2.6 V, respectively. The OVP circuit blocks the buck converter's operation when the input voltage is over 3.3 V, thereby preventing the destruction of the devices inside the controller IC. The TSD circuit shuts down the converter's operation when the temperature is over $85^{\circ}C$. In order to verify the proposed scheme, these protection circuits were firstly verified through the simulation in SPICE. The proposed protection circuits were then fabricated and the measured results showed a good matching with the simulation results.

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

A Method for Enhancing Data Transmission Performance in the Power-Line Communication Channel with Low-Voltage Surge Protective Devices (저압용 SPD가 설치된 전력선통신에서 데이터전송 성능 향상)

  • Choi, Jong-Min;Jeon, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • Low-Voltage power lines should equip surge protection devices which protect electronic equipments and human lives against lightning and abnormal voltages. Data transmission capacity of the power line is determined by frequency characteristics of the surge protective devices. To analyze the effects of surge protective devices on the data transmission performance, various combinations of installation methods are tested which include ZnO varistor elements that is compatible with class I, class II and class III. The result claims that ZnO varistor for class III is found to be one of the main factors that deteriorates the transmission performance. To overcome this problem a serial connection methed between Gap type SPD and ZnO varistor is proposed. With the proposed scheme, laboratory experimental results show that the data transmission performance can be improved up to 91.9[%] with proper SPD combination.