• Title/Summary/Keyword: Protection 방식

Search Result 1,064, Processing Time 0.035 seconds

Hierarchical channel coding scheme Using Unequal Error Protection (Unequal Error Protection 이용한 계층적 부호화 방식)

  • 정지원;최은아;박상진;이인기;김내수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.454-460
    • /
    • 2004
  • In this paper, we studied hierarchical channel coding scheme using unequal error protection method for consecutively broadcastingservice under the rain attenuation of Ka band satellite broadcasting. Unlike time-sharing methods, which are design for different channel coding scheme in according to different modulation, unequal error protection method is made in such way that minimum distance between signals are different for importance of signals with same modulation. Consequently we proposed optimal method according to performance analysis.

Fire Fighting Attachment Development Which Applies a Pipe Remnant (파이프 잔재를 활용한 배관 부속 개발 1)

  • Park, Seon-Yeong;Oh, Jae-hoon;Park, Hyo-Seok;Lee, Chang-Woon;Lee, Jin-Han;Moon, Jong-Wook
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.205-208
    • /
    • 2011
  • 최근 사용하는 소방배관의 현장 시공에 사용되는 공법 및 부속을 살펴보면 정통방식의 부속연결 방식, Tee 가공방식, 분기관 방식을 사용하고 있다. 이 방식 중 가장 많이 사용되고 있는 방식은 Tee가공 방식과 분기관 방식으로 이는 우리나라의 소방배관 시설의 규모로 보았을 때 부속과 공법이 미흡하다 할 수 있다. 기존의 공법은 현장 적용성이 떨어지고 화재안전 성능이 미흡하다 할 수 있으며 사회가 발달 하며 건축물의 형태가 다양해지고 초고층화가 이루어지고 있는 과정에서 본 연구에서는 현재사용 하고 있는 공법의 분석과 새로운 소방배관 부속을 개발 하려 한다.

  • PDF

A study on the technology and application of cathodic protection to reinforced concrete (철근콘크리트의 방식기술 및 음극방식의 적용에 관한 고찰)

  • Jeong, Jin-A;Ha, Ji-Myung;Oh, Se-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.599-604
    • /
    • 2016
  • Cathodic protection was first introduced as a technology for preventing the corrosion of metals in seawater and underground environments in the early 19th century, eventually leading to the introduction of cathodic protection to the reinforced concrete technology sector in the 1970s. In the 1990s, it was demonstrated that the effectiveness of corrosion protection had increased through a number of developments and studies. Recently, cathodic protection was applied to some reinforced concrete structures and has gradually expanded in scope in South Korea. Technical expertise is necessary to understand the underlying electrochemical principles and also because cathodic protection is important for normal physical maintenance. Therefore, in this study, we introduce the technical details and examples of applications of the cathodic protection of reinforced concrete, including the basic theory, principles, and other criteria.

An Experimental Study on the Application of Cathodic Protection By Applying Zn-Al Metal Spray to an RC Structure (철근콘크리트 구조물에 Zn-Al 금속용사 전기방식 공법의 적용성에 관한 실험적 연구)

  • Han, Man-Hae;Yoo, Jo-Hyeong;Lim, Young-Chul;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.21-29
    • /
    • 2010
  • Cathodic Protection has been introduced as a method of protecting metals under the ground or sea from corrosion. Since 1970, it has been applied to reinforced concrete structures as a corrosion protection method. After 1990, it became used around the world, and its usability has been well confirmed. But this method has some problems in terms of construction and economy. To solve these problems, a Cathodic Protection Method using a highly-durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. The corrosion protection performance was confirmed by measuring the corrosion current of the specimen. Through the experiment, it is possible to confirm that the Cathodic Protection Method using a high metal spray provides effective protection against corrosion to reinforced concrete structures.

An experimental study on the application of Cathodic Protection method applying Zn-Al metal spray on the RC structure (Zn-Al 금속용사 전기방식 공법의 콘크리트 구조물 적용성에 관한 실험적 연구)

  • Han, Man-Hae;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.429-432
    • /
    • 2008
  • Cathodic Protection Method was introduced as a corrosion protection method of metals under the ground or sea. Since 1970, it was applied to corrosion protection method of reinforced concrete structures. After 1990, this method has been used around the world, and its usability was proved. But this method has some problems on the aspect of construction and economy. In order to solve these problems, Cathodic Protection Method by using high durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. And a performance of corrosion protection was confirmed by measuring corrosion current of specimen. Through the result of experiment, it is possible to know that Cathodic Protection Method by using high metal spray is good to protect to corrosion on reinforced concrete structures.

  • PDF

Hierarchical Channel Coding Scheme Using UEP Method for Rain-Attenuation Compensation in Satellite Communication (위성통신에서 강우 감쇠 보상을 위한 UEP 방식의 계층적 부호화 방식)

  • Jung Ji-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.795-803
    • /
    • 2006
  • In this paper, we studied hierarchical channel coding scheme using unequal error protection method fur consecutively broadcastingservice under the rain attenuation of Ka band satellite broadcasting. Unlike time-sharing methods, which are design for different channel coding scheme in according to different modulation, unequal error protection method is made in such way that minimum distance between signals are different for importance of signals with same modulation. Consequently we proposed optimal method according to performance analysis.

Study on the Cathodic Protection Characteristics of Hot Water Boiler by Mg-Alloy Galvanic Anode(1) (Mg 합금 유전양극에 의한 온수Boiler의 음극방식특성에 관한 연구(1))

  • 임우조;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.147-152
    • /
    • 2001
  • Corrosion damage of boiler, factory equipment and so forth occur quickly due to using of the polluted water, resulting in increasing leak accident. Especially, working life of hot water boiler using the polluted water becomes more short, and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection methode is suitable for the application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of hot water boiler. In tap water solution, the measurement of cathodic protection potential according to the time elapsed is carried out, and behavior of cathodic polarization with current change is investigated. The main results obtained are as follows. In hot water boiler shell, the open circuit potential of base metal become less noble than that of weld Bone, and the current density of base metal becomes low than that of weld zone. The further distance from Mg-alloy galvanic anode, the higher cathodic protection potential of hot water boiler appears. And protective potential becomes high according to pass cathodic protection time and after 6∼10 days become stable.

  • PDF

A Study on the Effective Surge Protection Method from Induced Lightning Surgeto Improve Isolate Grounding to Common Grounding (낙뢰 Surge 방호를 위한, 독립접지를 공통접지로 개선하는 효율적인 방법에 대한 연구)

  • Jeon, Hyung-Gu;Woo, Jea-Wook;Suh, Yong-Joon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1459-1467
    • /
    • 2011
  • This paper proposes the effective method to improve the protection from induced lightning Surge by making common grounding from individual grounding. Common grounding under equipotential principle is more effective than individual grounding for lightning Surge protection, and so common grounding is indicated as international technical standard under the AC power supply system with neutral line. So, this paper is to propose the effective way of induced lightning Surge protection method for currently installed power supply system which has no neutral grounded line and individual grounding which are weak for lightning Surge protection. This proposal can improve the power supply system as has neutral line, and improve the grounding system to common grounding system. And also this paper proposes to make effective equipotential system with voltage variable shunting devices for lightning Surge protection.

  • PDF

A Study on the Effective Surge Protection Method from Induced Lightning Surge to Improve Isolate Grounding to Common Grounding (낙뢰 Surge 방호를 위한, 독립접지를 공통접지로 개선하는 효율적인 방법에 대한 연구)

  • Woo, Jea-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.215-218
    • /
    • 2013
  • This paper proposes the effective method to improve the protection from induced lightning surge by making common grounding from individual grounding. Common grounding under equipotential principle is more effective than individual grounding for lightning surge protection, and so common grounding is indicated as international technical standard under the AC power supply system with neutral line. So, this paper is to propose the effective way of induced lightning surge protection method for currently installed power supply system which has no neutral grounded line and individual grounding which are weak for lightning surge protection. This proposal can improve the power supply system as has neutral line, and improve the grounding system to common grounding system. And also this paper proposes to make effective equipotential system with voltage variable shunting devices for lightning surge protection.

  • PDF

Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method (정전위법에 의한 해상풍력 타워 구조물용 강재의 음극방식을 위한 최적방식전위 결정)

  • Lee, Jung-Hyung;Jung, Kwang-hu;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • In this study, electrochemical methods were used to determine the optimum protection potential of S355ML steel for the cathodic protection of offshore wind-turbine-tower substructures. The results of potentiodynamic polarization experiments indicated that the anodic polarization curve did not represent a passivation behavior, while under the cathodic polarization concentration, polarization was observed due to the reduction of dissolved oxygen, followed by activation polarization by hydrogen evolution as the potential shifted towards the active direction. The concentration polarization region was found to be located between approximately -0.72 V and -1.0 V, and this potential range is considered to be the potential range for cathodic protection using the impressed current cathodic protection method. The results of the potentiostatic experiments at various potentials revealed that varying current density tended to become stable with time. Surface characterization after the potentiostatic experiment for 1200 s, by using a scanning electron microscope and a 3D analysis microscope confirmed that corrosion damage occurred as a result of anodic dissolution under an anodic polarization potential range of 0 to -0.50 V, which corresponds to anodic polarization. Under potentials corresponding to cathodic polarization, however, a relatively intact surface was observed with the formation of calcareous deposits. As a result, the potential range between -0.8 V and -1.0 V, which corresponds to the concentration polarization region, was determined to be the optimum potential region for impressed current cathodic protection of S355ML steel.